如圖所示,三棱柱ABC-A1B1C1中,若E、F分別為AB、AC的中點(diǎn),平面EB1C1F將三棱柱分成體積為V1、V2兩部分,那么V1∶V2=________.

答案:7∶5
解析:

  思路解析:設(shè)三棱柱的高為h,底面的面積為S,體積為V,則V=V1+V2=Sh.

  ∵E、F分別為AB、AC的中點(diǎn),

  ∴S△AEFS,V1h(S+S+)=Sh,

  V2=Sh-V1Sh,

  ∴V1∶V2=7∶5.

  深化升華:V1對(duì)應(yīng)的幾何體AEF-A1B1C1是一個(gè)棱臺(tái),一個(gè)底面的面積與棱柱的底面積相等,另一個(gè)底面的面積等于棱柱底面的;V2對(duì)應(yīng)的是一個(gè)不規(guī)則的幾何體,顯然V2的體積無(wú)法直接表示,可以考慮間接的方法,用三棱柱的體積減去V1來(lái)表示.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在邊長(zhǎng)為12的正方形ADD1A1中,點(diǎn)B,C在線段AD上,且AB=3,BC=4,作BB1∥AA1,分別交A1D1、AD1于點(diǎn)B1、P,作CC1∥AA1,分別交A1D1、AD1于點(diǎn)C1、Q,將該正方形沿BB1、CC1折疊,使得DD1與AA1重合,構(gòu)成如圖所示的三棱柱ABC-A1B1C1
(1)求證:AB⊥平面BCC1B1;
(2)求四棱錐A-BCQP的體積;
(3)求二面角A-PQ-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•淮北一模)如圖所示,三棱柱ABC-A1B1Cl中,AB=AC=AA1=2,面ABC1⊥面AAlClC,∠AAlCl=∠BAC1=600,
AC1與A1C相交于0.
(1)求證.BO上面AAlClC;
(2)求三棱錐C1-ABC的體積;
(3)求二面角A1-B1C1-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,正三棱柱ABCA1B1C1的底面邊長(zhǎng)為a,側(cè)棱長(zhǎng)為,若經(jīng)過(guò)對(duì)角線AB1且與對(duì)角線BC1平行的平面交上底面一邊A1C1于點(diǎn)D.

(1)確定點(diǎn)D的位置,并證明你的結(jié)論;

(2)求二面角A1 AB-1D的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練14練習(xí)卷(解析版) 題型:解答題

如圖所示,直三棱柱ABCA1B1C1,D,E分別是AB,BB1的中點(diǎn).

(1)證明:BC1∥平面A1CD;

(2)設(shè)AA1=AC=CB=2,AB=2,求三棱錐CA1DE的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆安徽省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:選擇題

如圖所示,在三棱柱ABC- A1B1C1中, AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,點(diǎn)E、F分別是棱AB、BB1的中點(diǎn),則直線EF和BC1所成的角是 (    )

 

 

A.45°                   B.60°

C.90°                   D.120°

 

查看答案和解析>>

同步練習(xí)冊(cè)答案