12.用C(A)表示非空集合A中的元素個(gè)數(shù).已知A={1,2},B={x|(x2+ax)•(x2+ax+2)=0,若|C(A)-C(B)|=1,設(shè)實(shí)數(shù)a的所有可能取值集合是S,則C(S)=( 。
A.4B.3C.2D.1

分析 根據(jù)題意,分析C(A)=2,又由|C(A)-C(B)|=1,分析易得C(B)=1或3,即方程(x2+ax)•(x2+ax+2)=0有一個(gè)根或3個(gè)根;分析方程(x2+ax)•(x2+ax+2)=0的根的情況,可得a可取的值,即可得答案.

解答 解:根據(jù)題意,已知A={1,2},則C(A)=2,
又由|C(A)-C(B)|=1,則C(B)=1或3,
即方程(x2+ax)•(x2+ax+2)=0有一個(gè)根或3個(gè)根;
若(x2+ax)•(x2+ax+2)=0,則必有x2+ax=0或x2+ax+2=0,
若x2+ax=0,則x1=0或x2=-a,當(dāng)a=0時(shí),B={0},C(B)=1,符合題意;
若x2+ax+2=0,
當(dāng)△=0時(shí),a=±2$\sqrt{2}$,此時(shí)B={0,2$\sqrt{2}$,-2$\sqrt{2}$},C(B)=3,符合題意;
當(dāng)△>0時(shí),即a<-$\sqrt{2}$或a>2$\sqrt{2}$,此時(shí)必有C(B)=4,不符合題意;
當(dāng)△<0時(shí),此時(shí)必有C(B)=2,不符合題意;
綜合可得:a可取的值為0,±$\sqrt{2}$,
故選:B.

點(diǎn)評(píng) 本題考查集合的表示方法,關(guān)鍵是依據(jù)C(A)的意義,分析集合中元素的個(gè)數(shù),進(jìn)而分析方程(x2+ax)•(x2+ax+2)=0的根的情況.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列命題中假命題是(  )
A.?x∈R,lgx=0B.?x∈R,sinx+cosx=$\sqrt{3}$
C.?x∈R,x2+1≥2xD.?x∈R,2x>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,正方體ABCD一A1B1C1D1的棱長(zhǎng)為2,動(dòng)點(diǎn)E,F(xiàn)在棱A1B1上,且EF=1,動(dòng)點(diǎn)Q在棱CD上,P是棱AD中點(diǎn),R是棱DDl的中點(diǎn),則以下結(jié)論:
①四面體PEFQ的體積為定值;
②異面直線PE與QF的所成角的大小為定值;
③過P點(diǎn)有且只有一條直線與直線BB1和C1D1都平行;
④過P點(diǎn)有且只有一個(gè)平面與直線BB1和C1D1都平行;
⑤過點(diǎn)B,P,R的平面截該正方體所得的截面是五邊形.
其中正確結(jié)論的序號(hào)是①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.函數(shù)f(x)=$\frac{1}{{{2^x}-1}}$+a關(guān)于(0,0)對(duì)稱.
(1)求a得值;
(2)解不等式f(x)<$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知$\frac{sinα-cosα}{sinα+cosα}$=3,則tan2α等于( 。
A.2B.$\frac{4}{3}$C.$-\frac{3}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.以下四個(gè)命題中不正確的是 ( 。
A.$f(x)=\frac{|x|}{x}$是奇函數(shù)B.f(x)=x2,x∈(-3,3]是偶函數(shù)
C.f(x)=(x-3)2是非奇非偶函數(shù)D.y=x4+x2是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若$\overline z$=$\frac{i}{1+i}$,則z•$\overline z$=( 。
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知A={(x,y)|y=x-3},B={(x,y)|y=-x-5},則A∩B為(  )
A.{-1,4}B.{-1,-4}C.{(-1,4)}D.{(-1,-4)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題p:“?x≥0,e${\;}^{{x}_{0}}$<x0+1”,則¬p是( 。
A.?x≥0,ex<x+1B.?x≥0,ex>x+1C.?x≥0,ex≥x+1D.?x≥0,ex≥x+1

查看答案和解析>>

同步練習(xí)冊(cè)答案