已知:如圖所示,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,DE⊥AC于E,DF⊥BC于F.求證:AE·BF·AB=CD3.
見解析
證明:∵∠ACB=90°,CD⊥AB,
∴CD2=AD·BD,故CD4=AD2·BD2.
又在Rt△ADC中,DE⊥AC,
Rt△BDC中,DF⊥BC,
∴AD2=AE·AC,BD2=BF·BC.
∴CD4=AE·BF·AC·BC.
∵AC·BC=AB·CD,
∴CD4=AE·BF·AB·CD,即AE·BF·AB=CD3.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,E是圓O內(nèi)兩弦AB和CD的交點,過AD延長線上一點F作圓O的切線FG,G為切點,已知EF=FG.

求證:(1);(2)EF//CB.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,是圓的直徑,延長線上的一點,是圓的割線,過點的垂線,交直線于點,交直線于點,過點作圓的切線,切點為.

(1)求證:四點共圓;(2)若,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(2013•重慶)如圖,在△ABC中,∠C=90°,∠A=60°,AB=20,過C作△ABC的外接圓的切線CD,BD⊥CD,BD與外接圓交于點E,則DE的長為 _________ 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,已知是⊙的切線,是切點,直線交⊙兩點,的中點,連接并延長交⊙于點,若,則      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,點A,B,C是圓O上的點,且AB=4,∠ACB=45°,求圓O的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知A、B、C三點的坐標分別為(0,1)、(-1,0)、(1,0),P是線段AC上一點,BP交AO于點D,設三角形ADP的面積為S,點P的坐標為(x,y),求S關于x的函數(shù)表達式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,平行四邊形ABCD中,AE∶EB=1∶2,△AEF的面積為6,求△ADF的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,是圓的切線,切點為點,直線與圓交于兩點,的角平分線交弦、、兩點,已知,,則的值為        .

查看答案和解析>>

同步練習冊答案