橢圓的焦距是(   )

 A.2         B.            C.          D.

 

【答案】

A

【解析】

試題分析:橢圓化為標(biāo)準(zhǔn)方程得,焦距為2

考點:橢圓的幾何性質(zhì)

點評:焦距,長軸,短軸

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1
(a>b>1)右焦點為F,它與直線l:y=k(x+1)相交于P、Q兩點,l與x軸的交點M到橢圓左準(zhǔn)線的距離為d,若橢圓的焦距是b與d+|MF|的等差中項.
(1)求橢圓離心率e;
(2)設(shè)N與M關(guān)于原點O對稱,若以N為圓心,b為半徑的圓與l相切,且
OP
OQ
=-
5
3
求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(普通班)橢圓的焦距是長軸長與短軸長的比例中頂,則離心率等于
-1+
5
2
-1+
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的焦距是短軸長的2倍,那么橢圓的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓的焦距是它的兩條準(zhǔn)線間距離的
1
3
,則它的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2為橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)
的兩個焦點,過F2作橢圓的弦AB,若的△AF1B周長為16,橢圓的焦距是4
3
,則橢圓的方程是( 。

查看答案和解析>>

同步練習(xí)冊答案