(本小題滿(mǎn)分16分)
如圖,在四棱錐中,底面是矩形,平面,.以的中點(diǎn)為球心、為直徑的球面切于點(diǎn)

(1)求證:PD⊥平面;
(2)求直線與平面所成的角的正弦值;
(3)求點(diǎn)到平面的距離.
(1)先證,推出,證明;
(2);(3) 

試題分析:(1)證:依題設(shè),在以為直徑的球面上,則,……2分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002310331901.png" style="vertical-align:middle;" />,則,又,
所以,則, ……4分
因此有, ……5分
(2)如圖所示,建立空間直角坐標(biāo)系,則,,
,,            ……8分

設(shè)平面的一個(gè)法向量,由可得:,
,則,即.           ……10分
設(shè)所求角為,則,        ……12分
(3)設(shè)所求距離為,由,得: ……16分
點(diǎn)評(píng):典型題,立體幾何中平行、垂直關(guān)系的證明及角的計(jì)算問(wèn)題是高考中的必考題,通過(guò)建立適當(dāng)?shù)淖鴺?biāo)系,應(yīng)用空間向量,可使問(wèn)題簡(jiǎn)化。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
如圖,在四棱錐S - ABCD中,底面ABCD是直角梯形,側(cè)棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中點(diǎn).

(Ⅰ)求證:AM∥面SCD;
(Ⅱ)求面SCD與面SAB所成二面角的余弦值;
(Ⅲ)設(shè)點(diǎn)N是直線CD上的動(dòng)點(diǎn),MN與面SAB所成的角為,求sin的最大值,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱錐中,,,中點(diǎn),中點(diǎn),且為正三角形.

(1)求證:平面.
(2)求證:平面⊥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
如圖,直三棱柱ABCA1B1C1中,ACBC=1,∠ACB=90°,AA1,DA1B1中點(diǎn).

(1)求證:C1DAB1 ;
(2)當(dāng)點(diǎn)FBB1上什么位置時(shí),會(huì)使得AB1⊥平面C1DF?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分)在正四棱柱ABCD-A1B1C1D1中,E為CC1的中點(diǎn).

(1)求證:AC1∥平面BDE;(2)求異面直線A1E與BD所成角。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分)
如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,的中點(diǎn).

(1)當(dāng)時(shí),求平面與平面的夾角的余弦值;
(2)當(dāng)為何值時(shí),在棱上存在點(diǎn),使平面?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分)如圖所示,在棱長(zhǎng)為4的正方體ABCD—A1B1C1D1中,點(diǎn)E是棱CC1的中點(diǎn)。
 
(I)求三棱錐D1—ACE的體積;
(II)求異面直線D1E與AC所成角的余弦值;
(III)求二面角A—D1E—C的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

將一幅斜邊長(zhǎng)相等的直角三角板拼接成如圖所示的空間圖形,其中AD=BD=,∠BAC=30°,若它們的斜邊AB重合,讓三角板ABD以AB為軸轉(zhuǎn)動(dòng),則下列說(shuō)法正確的是         .

①當(dāng)平面ABD⊥平面ABC時(shí),C、D兩點(diǎn)間的距離為
②在三角板ABD轉(zhuǎn)動(dòng)過(guò)程中,總有AB⊥CD;
③在三角板ABD轉(zhuǎn)動(dòng)過(guò)程中,三棱錐D-ABC體積的最大值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

( )已知兩個(gè)不同的平面、,能判定//的條件是
A.、分別平行于直線B.、分別垂直于直線
C.、分別垂直于平面D.內(nèi)有兩條直線分別平行于

查看答案和解析>>

同步練習(xí)冊(cè)答案