【題目】定義:若數列滿足,存在實數,對任意,都有,則稱數列有上界,是數列的一個上界,已知定理:單調遞增有上界的數列收斂(即極限存在).
(1)數列是否存在上界?若存在,試求其所有上界中的最小值;若不存在,請說明理由;
(2)若非負數列滿足,(),求證:1是非負數列的一個上界,且數列的極限存在,并求其極限;
(3)若正項遞增數列無上界,證明:存在,當時,恒有.
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,點是橢圓的一個頂點,是等腰直角三角形.
(1)求橢圓的方程;
(2)過點分別作直線,交橢圓于,兩點,設兩直線的斜率分別為,,且,證明:直線過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f (x)=x-(a+1)ln x-(a∈R),g (x)=x2+ex-xex.
(1)當x∈[1,e] 時,求f (x)的最小值;
(2)當a<1時,若存在x1∈[e,e2],使得對任意的x2∈[-2,0],f (x1)<g (x2)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓:(),左、右焦點分別是、且,以為圓心,3為半徑的圓與以為圓心,1為半徑的圓相交于橢圓上的點
(1)求橢圓的方程;
(2)設橢圓:,為橢圓上任意一點,過點的直線交橢圓于兩點,射線交橢圓于點
①求的值;
②令,求的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
已知橢圓和拋物線有公共焦點F(1,0),的中心和的頂點都在坐標原點,過點M(4,0)的直線與拋物線分別相交于A,B兩點.
(Ⅰ)寫出拋物線的標準方程;
(Ⅱ)若,求直線的方程;
(Ⅲ)若坐標原點關于直線的對稱點在拋物線上,直線與橢圓有公共點,求橢圓的長軸長的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com