分析 (1)先分析各數(shù)為正數(shù),且積為定值,直接使用基本不等式求最小值;
(2)先分析各數(shù)為正數(shù),且和為定值,直接使用基本不等式求最大值.
解答 解:(1)若x>0,則3x>0,$\frac{12}{x}>0$,
∴f(x)=$\frac{12}{x}$+3x≥2•$\sqrt{\frac{12}{x}•3x}$=12,
當(dāng)且僅當(dāng):$\frac{12}{x}$=3x,即x=2時(shí),取“=”,
因此,函數(shù)f(x)的最小值為12;
(2)若$0<x<\frac{1}{3},則0<3x<1∴1-3x>0$,
∵f(x)=x(1-3x)=$\frac{1}{3}$•[3x•(1-3x)]≤$\frac{1}{3}$•$[\frac{3x+(1-3x)}{2}]^2$=$\frac{1}{12}$,
當(dāng)且僅當(dāng):3x=1-3x,即x=$\frac{1}{6}$時(shí),取“=”,
因此,函數(shù)f(x)的最大值為$\frac{1}{12}$.
點(diǎn)評(píng) 本題主要考查了基本不等式在求最值問題中的應(yīng)用,注意其前提條件為“一正,二定,三相等”缺一不可,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{5}{3}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com