設M是圓x2+y2-2x-2y+1=0上的點,則M到直線3x+4y-22=0的最長距離是
4
4
,最短距離是
2
2
分析:求出圓的圓心坐標與半徑,然后求出圓心到直線3x+4y-22=0的距離,圓上的點到直線3x+4y-22=0距離的最小值與最大值就是求出的距離加減半徑即可.
解答:解:∵圓x2+y2-2x-2y+1=0的圓心(1,1),半徑為1,
圓心(1、1)到直線3x+4y-22=0的距離d=
|3+4-22|
5
=3,
∴圓x2+y2-2x-2y+1=0上的點到直線3x+4y-22=0距離的最小值是3-r=3-1=2,
最大值為:3+r=3+1=4.
故答案為:4;2.
點評:本題主要考查了直線與圓的位置關(guān)系的應用,解題的關(guān)鍵是把所求的距離轉(zhuǎn)化為求圓心到直線的距離,要注意本題中滿足圓上的點到直線的距離的最大值,最小值的求法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設M是圓x2+y2-6x-8y=0上動點,O是原點,N是射線OM上點,若|OM|•|ON|=120,求N點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設M是圓x2+y2-6x-8y=0上的動點,O是原點,N是射線OM上的點,若|OM|•|ON|=150,求點N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省杭州高級中學高二(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

設M是圓x2+y2-6x-8y=0上動點,O是原點,N是射線OM上點,若|OM|•|ON|=120,求N點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:《第3章 直線與方程》、《第4章 圓與方程》2007年單元測試卷(重慶十一中)(解析版) 題型:解答題

設M是圓x2+y2-6x-8y=0上的動點,O是原點,N是射線OM上的點,若|OM|•|ON|=150,求點N的軌跡方程.

查看答案和解析>>

同步練習冊答案