已知角的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的非負(fù)半軸重合,終邊過點(diǎn),則sin(2)=(    )

    A.    B.     C.   D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


已知向量m=+1,1),n=+2,2),若(m+n)⊥(m-n),則λ=(  ).

   A.-4       B.-3                  C.-2       D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


若兩個(gè)橢圓的離心率相等,則稱它們?yōu)椤跋嗨茩E圓”.如圖,在直角坐標(biāo)系xOy中,已知橢圓C1=1,A1A2分別為橢圓C1的左、右頂點(diǎn).橢圓C2以線段A1A2為短軸且與橢圓C1為“相似橢圓”.

(1)求橢圓C2的方程;

(2)設(shè)P為橢圓C2上異于A1A2的任意一點(diǎn),過PPQx軸,垂足為Q,線段PQ交橢圓C1于點(diǎn)H.求證:H為△PA1A2的垂心.(垂心為三角形三條高的交點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


經(jīng)市場(chǎng)調(diào)查,某旅游城市在過去的一個(gè)月內(nèi)(以30天計(jì)),旅游人數(shù)f(t)(萬人)與時(shí)間t(天)的函數(shù)關(guān)系近似滿足f(t)=4+,人均消費(fèi)g(t)(元)與時(shí)間t(天)的函數(shù)關(guān)系近似滿足g(t)=115-|t-15|.

(1)求該城市的旅游日收益w(t)(萬元)與時(shí)間t(1≤t≤30,t∈N*)的函數(shù)關(guān)系式;

(2)求該城市旅游日收益的最小值(萬元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知數(shù)列{an}的通項(xiàng)公式為an=3n-2(n∈N+),則a3+a6 +a9+a12+a15=(    )

    A. 120    B. 125     C. 130    D. 135

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知=2,,,且,則·+·+·=         。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知函數(shù)f(x)=x3+x2+ax+b,g(x)=x3+x2+ 1nx+b,(a,b為常數(shù)).

    (I)若g(x)在x=l處的切線方程為y=kx-5(k為常數(shù)),求b的值;

    (II)設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f’(x),若存在唯一的實(shí)數(shù)x0,使得f(x0)=x0與f′(x0)=0同時(shí)成立,求實(shí)數(shù)b的取值范圍;

    (III)令F(x)=f(x)-g(x),若函數(shù)F(x)存在極值,且所有極值之和大于5+1n2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知函數(shù)的圖像上的一

    個(gè)最低點(diǎn)為P,離P最近的兩個(gè)最高點(diǎn)分別為M、N,且·=16-

    (1)求的值;

    (2)在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,若,且a=2,b+c=4,

        求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知函數(shù)的圖象過點(diǎn).

(Ⅰ)求實(shí)數(shù)的值; 

(Ⅱ)求函數(shù)的最小正周期及最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案