已知函數(shù)f(x)=log2(x-1),g(
2x-t
2
)=2x(t∈R)

(1)求y=g(x)的解析式;
(2)若t=1,求當(dāng)x∈[2,3]時(shí),g(x)-f(x)的最小值;
(3)若在x∈[2,3]時(shí),恒有g(shù)(x)≥f(x)成立,求實(shí)數(shù)t的取值范圍.
考點(diǎn):對數(shù)函數(shù)圖象與性質(zhì)的綜合應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用換元法,即可求y=g(x)的解析式;
(2)求出g(x)-f(x)的表達(dá)式,利用基本不等式的性質(zhì)即可求出函數(shù)的最小值;
(3)將不等式恒成立轉(zhuǎn)化求函數(shù)的最值即可得到結(jié)論.
解答: 解:(1)令
2x-t
2
=p
,則x=log2(2p+t)
故g(p)=2log2(2p+t),即g(x)=2log2(2x+t)
(2)g(x)-f(x)=log2
(2x+1)2
x-1

(2x+1)2
x-1
=4(x-1)+
9
x-1
+12≥24
,當(dāng)且僅當(dāng)4(x-1)=
9
x-1
時(shí)取等號
故當(dāng)x=
5
2
時(shí),g(x)-f(x)的最小值為log224
(3)由2log2(2x+t)≥log2(x-1)得2x+t≥
x-1

t≥
x-1
-2x
在x∈[2,3]內(nèi)恒成立
先利用換元法求y=
x-1
-2x
在x∈[2,3]上的最大值,為-3
所以t≥-3
點(diǎn)評:本題主要考查與對數(shù)有關(guān)的基本運(yùn)算,函數(shù)解析式的求解,以及不等式恒成立問題,綜合性較強(qiáng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3sin(2x-
π
3
),x∈R
(1)在給定的平面直角坐標(biāo)系中,利用五點(diǎn)法畫函數(shù)f(x)=3sin(2x-
π
3
),x∈[0,π]的簡圖;
(2)求f(x)=3sin(2x-
π
3
),x∈[-π,0]的單調(diào)增區(qū)間;
(3)若方程f(x)=m在[-
π
2
,0]上有實(shí)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=CC1,M為AB中點(diǎn),D在A1B1上且A1D=3DB1
(1)求證:平面CMD⊥平面ABB1A1;
(2)求二面角C-BD-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)Q(-1,
2
2
),且離心率e=
2
2

(1)求橢圓C的方程;
(2)設(shè)直線l:y=kx+1與曲線C交于M、N兩點(diǎn),當(dāng)線段MN的中點(diǎn)在直線x+2y=1上時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對邊,a2=b2+c2-bc.
(Ⅰ)求A;
(Ⅱ)若a=2,求bsinB+csinC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,AB∥CD,AB=
1
2
DC=1,BP=BC=
2
,PC=2,AB⊥平面PBC,F(xiàn)為PC中點(diǎn).
(Ⅰ)求證:BF∥平面PAD;
(Ⅱ)求證:平面ADP⊥平面PDC;
(Ⅲ)求VP-ABCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓G:x2+y2-2x-
2
y=0,經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)F及上頂點(diǎn)B,過圓外一點(diǎn)(m,0)(m>a)傾斜角為
6
的直線l交橢圓于C,D兩點(diǎn),
(Ⅰ)求橢圓的方程;
(Ⅱ)若右焦點(diǎn)F在以線段CD為直徑的圓E的外部,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
25
+
y2
9
=1上的點(diǎn)P到橢圓左焦點(diǎn)的最大距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若-1≤m≤2,則1-2m的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案