【題目】若lg(3x)+lg y=lg(x+y+1),則xy的最小值為(  )

A. 1 B. 2 C. 3 D. 4

【答案】A

【解析】

先根據(jù)對(duì)稱的運(yùn)算性質(zhì)化簡(jiǎn)得到3xy=x+y+1,再根據(jù)基本不等式即可求出答案.

∵lg(3x)+lgy=lg(3xy)=lg(x+y+1),x>0,y>0,

∴3xy=x+y+1,

∴3xy≥3,當(dāng)且僅當(dāng)x=y=1時(shí)取等號(hào),

即xy≥1,

xy的最小值是1,

故選:A

【點(diǎn)睛】

在利用基本不等式求最值時(shí),要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號(hào)取得的條件)的條件才能應(yīng)用,否則會(huì)出現(xiàn)錯(cuò)誤

型】單選題
結(jié)束】
12

【題目】已知兩定點(diǎn),如果動(dòng)點(diǎn)滿足,則點(diǎn)的軌跡所包圍的圖形的面積等于(

A. B. C. D.

【答案】C

【解析】

試題分析:要求面積,首先要明確圖形是什么?可先求出軌跡方程,再由軌跡方程確定曲線的形狀,本題中設(shè)動(dòng)點(diǎn)坐標(biāo)為,由,可求出軌跡方程為,軌跡是以2為半徑為圓,面積

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某建筑工地搭建的腳手架局部類似于一個(gè) 的長(zhǎng)方體框架,一個(gè)建筑工人欲從處沿腳手架攀登至 處,則其最近的行走路線中不連續(xù)向上攀登的概率為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位招聘面試,每次從試題庫隨機(jī)調(diào)用一道試題,若調(diào)用的是A類型試題,則使用后該試題回庫,并增補(bǔ)一道A類試題和一道B類型試題入庫,此次調(diào)題工作結(jié)束;若調(diào)用的是B類型試題,則使用后該試題回庫,此次調(diào)題工作結(jié)束.試題庫中現(xiàn)共有n+m道試題,其中有n道A類型試題和m道B類型試題,以X表示兩次調(diào)題工作完成后,試題庫中A類試題的數(shù)量.
(Ⅰ)求X=n+2的概率;
(Ⅱ)設(shè)m=n,求X的分布列和均值(數(shù)學(xué)期望)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在各項(xiàng)均為正數(shù)的等比數(shù)列,,且,成等差數(shù)列.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)若數(shù)列滿足,為數(shù)列的前項(xiàng)和. 設(shè),當(dāng)最大時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,an=n2-kn(n∈N*),且{an}單調(diào)遞增,則k的取值范圍是(  )

A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)

【答案】D

【解析】

根據(jù)函數(shù)的單調(diào)性可得an+1﹣an0對(duì)于n∈N*恒成立,建立關(guān)系式,解之即可求出k的取值范圍.

數(shù)列{an},且{an}單調(diào)遞增

∴an+1﹣an0對(duì)于n∈N*恒成立即(n+1)2﹣k(n+1)﹣(n2﹣kn)=2n+1﹣k>0對(duì)于n∈N*恒成立

∴k<2n+1對(duì)于n∈N*恒成立,即k<3

故選:D.

【點(diǎn)睛】

本題主要考查了數(shù)列的性質(zhì),本題易錯(cuò)誤地求導(dǎo)或把它當(dāng)成二次函數(shù)來求解,注意n的取值是解題的關(guān)鍵,屬于易錯(cuò)題.

型】單選題
結(jié)束】
8

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S4=40,Sn=210,Sn-4=130,則n=(  )

A.12 B.14 C.16 D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的S為( 。

A.2
B.
C.-
D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)不等式mx2-2x-m+1<0對(duì)于滿足|m|≤2的一切m的值都成立,求x的取值范圍.

【答案】

【解析】

令f(m)=m(x2﹣1)﹣2x+1,由條件f(m)0對(duì)滿足|m|≤2的一切m的值都成立,利用一次函數(shù)的單調(diào)性可得:f(﹣2)<0,f(2)<0.解出即可.

令f(m)=m(x2﹣1)﹣2x+1,由條件f(m)0對(duì)滿足|m|≤2的一切m的值都成立,

則需要f(﹣2)<0,f(2)<0.

解不等式組,解得

x的取值范圍是

【點(diǎn)睛】

本題考查了一次函數(shù)的單調(diào)性、一元二次不等式的解法,考查了轉(zhuǎn)化方法,考查了推理能力與計(jì)算能力,屬于中檔題.

型】解答
結(jié)束】
21

【題目】某廠有一批長(zhǎng)為18m的條形鋼板,可以割成1.8m和1.5m長(zhǎng)的零件.它們的加工費(fèi)分別為每個(gè)1元和0.6元.售價(jià)分別為20元和15元,總加工費(fèi)要求不超過8元.問如何下料能獲得最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A(1,2,3),B(2,1,2),C(1,1,2),O為坐標(biāo)原點(diǎn),點(diǎn)D在直線OC上運(yùn)動(dòng),則當(dāng)·取最小值時(shí),點(diǎn)D的坐標(biāo)為(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,四邊形四邊均相等,點(diǎn)在面的射影為中點(diǎn)

(1)證明:;

(2),,,求點(diǎn)到面的距離

查看答案和解析>>

同步練習(xí)冊(cè)答案