已知復(fù)數(shù)z滿足|z|≤2,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點Z的集合構(gòu)成的圖形的面積是
 
考點:復(fù)數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:設(shè)出復(fù)數(shù)z,代入|z|≤2得到復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點Z的集合構(gòu)成的圖形,由圓的面積公式得答案.
解答: 解:設(shè)z=x+yi(x,y∈R),
由|z|≤2,得
x2+y2
≤2
,
即x2+y2≤4.
∴復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點Z的集合構(gòu)成的圖形是半徑為2的圓.
其面積為4π.
故答案為:4π.
點評:本題考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某礦山采煤的單位成本y與采煤量x有關(guān),其數(shù)據(jù)如下
采煤量
(千噸)
2 4 5 6 8
單位成本
(元)
70 50 60 40 30
(1)作出這些數(shù)據(jù)的散點圖.
(2)求出這些數(shù)據(jù)的回歸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,側(cè)棱PD⊥底面ABCD,底面ABCD是正方形,若PD=DA,M是PC的中點.
(Ⅰ)證明:PA∥平面BDM;
(Ⅱ)求二面角B-DM-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2x+3在[a,a+2]上的最大值為6,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某電視臺為宣傳安徽,隨機(jī)對安徽15~65歲的人群抽取了n人,回答問題“皖江城市帶有哪幾個城市?”統(tǒng)計結(jié)果如圖表所示:
組號 分組 回答正確的人數(shù) 回答正確的人數(shù)占本組的頻率
第1組 [15,25) a 0.5
第2組 [25,35) 18 x
第3組 [35,45) b 0.9
第4組 [45,55) 9 0.36
第5組 [55,65) 3 y
(1)分別求出a,b,x,y的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線L過點A(2,4),它被平行線x-y+1=0與x-y-1=0所截是線段的中點在直線x+2y-3=0上,則L的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,若S4=8,S8=20,則a9+a10+a11+a12=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓方程為:
x2
m+1
+
y2
m-3
=1,則該橢圓的焦距為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩圓9x2+9y2-45y+14=0,9x2+9y2-30x+1=0的交點為A和B,則AB的垂直平分線方程是
 

查看答案和解析>>

同步練習(xí)冊答案