20.函數(shù)f(x)=xe-x,x∈[0,4]的最小值是0.

分析 先求出導(dǎo)函數(shù)f′(x),由f′(x)>0和f′(x)<0,求出x的取值范圍,得出函數(shù)f(x)的單調(diào)區(qū)間,從而求出函數(shù)的最值.

解答 解:函數(shù)f(x)=xe-x,可得f′(x)=$\frac{1-x}{{e}^{x}}$,
當(dāng)x∈[0,1)時(shí),f′(x)>0,f(x)單調(diào)遞增,當(dāng)x∈(1,4]時(shí),f′(x)<0,f(x)單調(diào)遞減,
∵f(0)=0,f(4)=$\frac{4}{{e}^{4}}$>0,∴當(dāng)x=0時(shí),f(x)有最小值,且f(0)=0.
故答案為:0.

點(diǎn)評(píng) 本題考查的是利用導(dǎo)數(shù),判斷函數(shù)的單調(diào)性,從而求出最值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知點(diǎn)M是⊙O:x2+y2=4上一動(dòng)點(diǎn),A(4,0),點(diǎn)P為線(xiàn)段AM的中點(diǎn),
(1)求點(diǎn)P的軌跡C的方程
(2)過(guò)點(diǎn)A的直線(xiàn)與軌跡C有公共點(diǎn),求的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)$f(x)=sin({x+\frac{7}{4}π})+cos({x-\frac{3}{4}π})$
(1)求f(x)的最小正周期和最小值;
(2)已知cos(β-α)=$\frac{4}{5}$,cos(β+α)=-$\frac{4}{5}$,0<α<β≤$\frac{π}{2}$,求$f({2β-\frac{π}{4}})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=x2+ax+b(a,b∈R),如果?x0,使f(x0)=0.且?x∈R,都有f(x)≥f(x0)成立.又若關(guān)于x的不等式f(x)<c的解集為(m,m+8),則實(shí)數(shù)c的值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知直線(xiàn)l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-4+\frac{{\sqrt{3}}}{2}t}\\{y=\frac{1}{2}t}\end{array}}\right.$(t為參數(shù)),則直線(xiàn)l的傾斜角為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)y=$\frac{x+1}{{x}^{2}+5x+6}$(x>-1)的最大值是3$-2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知f(x)=sinx-cosx+1,x∈R.
(1)求f(x)的最小正周期和最大值;
(2)求f(x)的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC=2,點(diǎn)E是PC的中點(diǎn),F(xiàn)在直線(xiàn)PA上.
(1)若EF⊥PA,求$\frac{PF}{PA}$的值;
(2)求二面角P-BD-E的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)f(x)=xa-ax(0<a<1),則f(x)在[0,+∞)內(nèi)的極大值點(diǎn)x0等于( 。
A.0B.aC.1D.1-a

查看答案和解析>>

同步練習(xí)冊(cè)答案