(14分)已知數(shù)列{}的前項(xiàng)和,

(Ⅰ)求數(shù)列的通項(xiàng)公式­;

(Ⅱ)設(shè),且,求.

解析:(Ⅰ)∵Sn=n2+2n  ∴當(dāng)時(shí),    ……4分

當(dāng)n=1時(shí),a1=S1=3, ,滿足上式              ……6分

                                     ……7分

(Ⅱ)∵,  ∴         ……9分

                                   ……11分

            ……13分

                                         ……14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前項(xiàng)和為sn,且sn+1=4an+2(n∈N+),a1=1,.
(1)設(shè)bn=an+1-2an,求b1并證明數(shù)列{bn}為等比數(shù)列;
(2)設(shè)cn=
an2n
,求證{cn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前項(xiàng)和為Sn=2n2+3n+1,則an=
6,n=1
4n+1,n≥2
6,n=1
4n+1,n≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前項(xiàng)和為Sn,且滿足Sn=
1
2
n2+
3
2
n(n≥1,n∈N*)

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn為數(shù)列{
1
anan+1
}的前n項(xiàng)和,求使不等式Tn
1005
2012
成立的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前項(xiàng)和為Sn,且Sn=n2Sn,數(shù)列{bn}為等比數(shù)列,且b1=l,b4=64.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若數(shù)列{an}滿足cn=ab,求數(shù)列{cn}的前項(xiàng)和Tn;
(3)在(2)的條件下,數(shù)列{cn}中是否存在三項(xiàng),使得這三項(xiàng)成等差數(shù)列?若存在,求出此三項(xiàng),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前項(xiàng)和為Sn,a1=1,且3an+1+2Sn=3(n∈N+
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若對(duì)任意的正整數(shù)n,
32
k≤Sn
恒成立,求實(shí)數(shù)k的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案