直角坐標(biāo)平面xOy上的兩點(diǎn)A(-2,0),B(2,0),若該平面上的向量
OM
=(x,y)滿(mǎn)足:|
MA
|+|
MB
|=10,則向量的終點(diǎn)M(x,y)的軌跡方程為
x2
25
+
y2
21
=1
x2
25
+
y2
21
=1
分析:根據(jù)點(diǎn)M到兩定點(diǎn)A、B的距離和為定值,且定值大于兩定點(diǎn)的距離,可知點(diǎn)M的軌跡是橢圓,然后根據(jù)橢圓的定義求出a,b即可求出所求.
解答:解:∵兩點(diǎn)A(-2,0),B(2,0)滿(mǎn)足:|
MA
|+|
MB
|=10,
∴點(diǎn)M的軌跡為橢圓,且2a=10,c=2
解得b=
52-22
=
21

∴向量的終點(diǎn)M(x,y)的軌跡方程為:
x2
25
+
y2
21
=1

故答案為:
x2
25
+
y2
21
=1
點(diǎn)評(píng):本題主要考查了向量在幾何中的應(yīng)用,以及橢圓的定義,同時(shí)考查了分析問(wèn)題的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直角坐標(biāo)平面xOy上的一個(gè)變換是先繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,再作關(guān)于x軸反射變換,求這個(gè)變換的逆變換的矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)平面xOy上的一列點(diǎn)A1(1,a1),?A2(2,a2),?…,?An(n,an),?…,簡(jiǎn)記為{An}、若由bn=
AnAn+1
j
構(gòu)成的數(shù)列{bn}滿(mǎn)足bn+1>bn,n=1,2,…,其中
j
為方向與y軸正方向相同的單位向量,則稱(chēng){An}為T(mén)點(diǎn)列,
(1)判斷A1( 1,  1),?A2( 2,  
1
2
),?A3( 3,  
1
3
),?…,?
An( n, 
1
n
 ),?…
,是否為T(mén)點(diǎn)列,并說(shuō)明理由;
(2)若{An}為T(mén)點(diǎn)列,且點(diǎn)A2在點(diǎn)A1的右上方、任取其中連續(xù)三點(diǎn)Ak、Ak+1、Ak+2,判斷△AkAk+1Ak+2的形狀(銳角三角形、直角三角形、鈍角三角形),并予以證明;
(3)若{An}為T(mén)點(diǎn)列,正整數(shù)1≤m<n<p<q滿(mǎn)足m+q=n+p,求證:
AnAq
j
AmAp
j

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)平面XOY上的一列點(diǎn)A1(1,a1),A2(2,a2),A3(3,a3),…An(n,an),…簡(jiǎn)記為{An},若由bn=
AnAn+1
j
構(gòu)成的數(shù)列{bn}滿(mǎn)足bn+1>bn,(n=1,2,…,n∈N) (其中
j
是與y軸正方向相同的單位向量),則稱(chēng){An}為“和諧點(diǎn)列”.
(1)試判斷:A1(1,1),A2(2,
1
2
)
,A3(3,
1
22
)
An(n,
1
2n-1
)
…是否為“和諧點(diǎn)列”?并說(shuō)明理由.
(2)若{An}為“和諧點(diǎn)列”,正整數(shù)m,n,p,q滿(mǎn)足:≤m<n<p<q1,且m+q=n+p.求證:aq+am>an+ap

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)平面xoy上 的一列點(diǎn)A1(1,a1),A2(2,a2),…,An(n,an),…,簡(jiǎn)記為{An}.若由bn=
AnAn+1
j
構(gòu)成的數(shù)列{bn}滿(mǎn)足bn+1>bn(其中
j
是y軸正方向同向的單位向量),則稱(chēng){An}為T(mén)點(diǎn)列.
(1)判斷A1(1,1),A2(2,
1
2
),A3(3,
1
3
)…,An(n,
1
n
),…
是否為T(mén)點(diǎn)列;
(2)若{an}是等差數(shù)列,判斷點(diǎn)列A1(1,a1),A2(2,a2),…,An(n,an),…是否為T(mén)點(diǎn)列,并說(shuō)明理由;
若{an}是等比數(shù)列,判斷點(diǎn)列A1(1,a1),A2(2,a2),…,An(n,an),…是否為T(mén)點(diǎn)列,并說(shuō)明理由;
(3)若{An}為T(mén)點(diǎn)列,且點(diǎn)A2在點(diǎn)A1的右上方,任取其中連續(xù)三點(diǎn)AK,AK+1,AK+2,判斷△AKAK+1AK+2的形狀(銳角三角形,直角三角形,鈍角三角形),并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案