已知一顆質地均勻的立方體骰子六個面標有1,2,3,4,5,6,連續(xù)拋擲骰子,設每次拋擲相互獨立,且每次拋擲每面出現(xiàn)概率相同,令第?次得到的點數(shù)為a?,若存在正整數(shù)k使a1+a2+…+ak=6,則稱k為幸運數(shù)字,求幸運數(shù)字為4的概率.
考點:古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:計算出立方體骰子連續(xù)拋擲4次的基本事件總數(shù),及滿足a1+a2+a3+a4=6的基本事件個數(shù),代入古典概型概率計算公式,可得答案.
解答: 解:若k=4則,
a1+a2+a3+a4=6,
則a1,a2,a3,a4的值只能為1,1,1,3和1,1,2,2兩種情況,
其中“1,1,1,3”排列有
C
1
4
=4種;
“1,1,2,2”排列有
C
2
4
=6種;
共10種;
總的基本事件有:64,
故幸運數(shù)字為4的概率P=
10
64
=
5
648
點評:本題考查的知識點是古典概型概率計算公式,其中熟練掌握利用古典概型概率計算公式求概率的步驟,是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=145.
(1)求數(shù)列{bn}的通項公式bn;
(2)設數(shù)列{an}滿足an=2(2+bn,記Sn為數(shù)列{an}的前n項和,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

邊長為2
2
的正△ABC內接于體積為4
3
π的球,則球面上的點到△ABC最大距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的前n項和為Sn(n∈N*),已知a10=18,S5=-15.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和的最小值,并指出此時n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某人擺一個攤位賣小商品,一周內出攤天數(shù)x與盈利y(百元),之間的一組數(shù)據(jù)關系見表:
x23456
y2.23.85.56.57.0
已知
5
i=1
xi2=90,
5
i=1
xiyi=112.3,
(Ⅰ)在如圖坐標系中畫出散點圖;
(Ⅱ)計算
.
x
,
.
y
,并求出線性回歸方程;
(Ⅲ)在第(Ⅱ)問條件下,估計該攤主每周7天要是天天出攤,盈利為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求經過圓C1:x2+y2-4x+2y+1=0與圓C2:x2+y2-6x=0的交點且過點(2,-2)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此做了五次實驗,得到的數(shù)據(jù)列表如下:
零件的數(shù)量x(個) 2 3 4 5 6
所需時間y(小時) 2.2 3.8 5.5 6.5 7.0
(Ⅰ)在如圖給定的坐標系中劃出表中數(shù)據(jù)的散點圖:
(Ⅱ)求出y關于x的線性同歸方程
y
=
b
x+
a
,并在(Ⅰ)的坐標系中畫出同歸直線(參考公式:
b
=
n
i=1
x1y1-n
.
x
.
y
n
i=1
x
2
1
-n
.
x
2
,
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若A(1,2,1),B(2,2,2),點P在x軸上,且|PA|=|PB|,則點P的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
|2x-1|-1,x≤1
x2-3x+3
x-1
,x>1
,下列關于函數(shù)g(x)=[f(x)]2+af(x)-1(其中a為常數(shù))的敘述中:
①對?a∈R,函數(shù)g(x)至少有一個零點;
②當a=0時,函數(shù)g(x)有兩個不同零點;
③?a∈R,使得函數(shù)g(x)有三個不同零點;
④函數(shù)g(x)有四個不同零點的充要條件是a<0.
其中真命題有
 
.(把你認為的真命題的序號都填上)

查看答案和解析>>

同步練習冊答案