已知直線x+y=a與圓x2+y2=9交于兩點(diǎn)A、B,且|
OA
+
OB
|=|
OA
-
OB
|,其中O為坐標(biāo)原點(diǎn),則實(shí)數(shù)a的值為(  )
A、3
B、-3
C、±3
D、±
3
2
2
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專(zhuān)題:平面向量及應(yīng)用
分析:設(shè)A(x1,y1),B(x2,y2).聯(lián)立
x+y=a
x2+y2=9
,可得2x2-2ax+a2-9=0.△>0.可得根與系數(shù)的關(guān)系,利用|
OA
+
OB
|=|
OA
-
OB
|,可得
OA
OB
,
OA
OB
=0.即x1x2+y1y2=0,代入解出即可.
解答: 解:設(shè)A(x1,y1),B(x2,y2).
聯(lián)立
x+y=a
x2+y2=9
,化為2x2-2ax+a2-9=0.
△=4a2-8(a2-9)=4(18-a2)>0.(*).
∴x1+x2=a,x1x2=
a2-9
2

∵|
OA
+
OB
|=|
OA
-
OB
|,
OA
OB

OA
OB
=0.
∴x1x2+y1y2=x1x2+(a-x1)(a-x2)=2x1x2-a(x1+x2)+a2=0,
∴a2-9-a2+a2=0,
解得a=±3,滿(mǎn)足(*).
故選:C.
點(diǎn)評(píng):本題考查了直線與圓相交問(wèn)題、一元二次方程的根與系數(shù)的關(guān)系、向量垂直與數(shù)量積的關(guān)系、向量的平行四邊形法則,考查了推理能力和技能數(shù)列,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=-ax2+2x+1至多有一個(gè)零點(diǎn),則a的取值范圍是(  )
A、1B、[1,+∞)
C、(-∞,-1]D、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在[1-a,5]上的偶函數(shù),則a的值是( 。
A、0B、1C、6D、-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)曲線y=xn+1(n∈N*)在點(diǎn)(2,2n+1)處的切線與x軸交點(diǎn)的橫坐標(biāo)為an,則數(shù)列{(n+1)an}的前n項(xiàng)和為( 。
A、n2-1
B、n2+1
C、n2-n
D、n2+n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A={x|0≤x+2≤5},B={x|x<-1或x>4},則A∩B等于( 。
A、{x|x≤3或x>4}
B、{x|-1<x≤3}
C、{x|3≤x<4}
D、{x|-2≤x<-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=ax-a-x存在唯一的零點(diǎn)x0,則當(dāng)x0>x>0時(shí),恒有(  )
A、f(x)<0
B、1-a>f(x)>0
C、f(x)>1-a
D、以上判斷都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b,c,d,e是五個(gè)不同的正整數(shù),其中有且只有一個(gè)是偶數(shù),若方程(x-a)(x-b)(x-c)(x-d)(x-e)=2010有大于a,b,c,d,e的整數(shù)解x,則a+b+c+d+e的末尾數(shù)字是( 。
A、2B、3C、4D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2-4x+5,x∈[1,2],則該函數(shù)值域?yàn)椋ā 。?/div>
A、[1,+∞]
B、[1,5]
C、[1,2]
D、[2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩艘貨輪都要在某個(gè)泊位?6小時(shí),假定它們?cè)谝粫円沟臅r(shí)間段中隨機(jī)到達(dá),試求兩船中有一艘在停泊位時(shí),另一艘船必須等待的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案