8.如圖是2016年某大學(xué)自主招生面試環(huán)節(jié)中,七位評委為某考生打出的分數(shù)的莖葉圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的中位數(shù)和眾數(shù)依次為(  )
A.84,84B.84,85C.86,84D.84,86

分析 根據(jù)所給的莖葉圖,看出七個數(shù)據(jù),根據(jù)分數(shù)處理方法,去掉一個最高分93和一個最低分79后,把剩下的五個數(shù)字求出平均數(shù)和眾數(shù)

解答 解:由莖葉圖知,去掉一個最高分93和一個最低分79后,
所剩數(shù)據(jù)84,84,86,84,87的中位數(shù)為84;
眾數(shù)為:84;
故選A.

點評 本題考查了利用莖葉圖求平均數(shù)和眾數(shù)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.拋物線y2=2x的焦點坐標是($\frac{1}{2}$,0),準線方程是x=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在等差數(shù)列{an}中,前n項和為Sn,a1=1,$\frac{{S}_{2017}}{2017}$=$\frac{{S}_{2016}}{2016}$+$\frac{1}{2}$,設(shè)Tn是數(shù)列{bn}的前n項和,bn=lg$\frac{{a}_{n+1}}{{a}_{n}}$,則T99=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\sqrt{3}$sinωxcosωx+cos2ωx-$\frac{1}{2}$(ω>0),其最小正周期為$\frac{π}{2}$.
(1)求f(x)在區(qū)間[-$\frac{π}{8}$,$\frac{π}{4}}$]上的減區(qū)間;
(2)將函數(shù)f(x)圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得的圖象向右平移$\frac{π}{4}$個單位,得到函數(shù)g(x)的圖象,若關(guān)于x的方程g(x)+k=0在區(qū)間[0,$\frac{π}{2}}$]上有且只有一個實數(shù)根,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知數(shù)列{an}為等差數(shù)列,Sn為前n項和,公差為d,若$\frac{{S}_{2017}}{2017}$-$\frac{{S}_{17}}{17}$=100,則d的值為( 。
A.$\frac{1}{20}$B.$\frac{1}{10}$C.10D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={0,1,2},集合B={-1,2},則A∪B=( 。
A.{-1,0,1,2}B.{2}C.{-1,1,2}D.{-1,0,1,2,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.運行如圖算法語句時,輸出的數(shù)=(  )
A.10B.4C.6D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知曲線y=$\frac{x^2}{4}$-lnx的一條切線的斜率為-$\frac{1}{2}$,則切點的橫坐標為( 。
A.3B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,若sinA:sinB:sinC=7:8:13,則角C=120°.

查看答案和解析>>

同步練習(xí)冊答案