【題目】給出函數(shù)如下表,則f〔g(x)〕的值域為( )

x

1

2

3

4

g(x)

1

1

3

3

x

1

2

3

4

f(x)

4

3

2

1

A. {4,2} B. {1,3} C. {1,2,3,4} D. 以上情況都有可能

【答案】A

【解析】

當x=1或x=2時,g(1)=g(2)=1,f(g(1))=f(g(2))=f(1)=4;當x=3或x=4時,g(3)=g(4)=3,由表中可得f(g(3))=f(g(4))=f(3)=2.于是可得答案.

當x=1或x=2時,g(1)=g(2)=1,

∴f(g(1))=f(g(2))=f(1)=4;

當x=3或x=4時,g(3)=g(4)=3,

∴f(g(3))=f(g(4))=f(3)=2.

故f〔g(x)〕的值域為{2,4}.

故選:A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,從參加環(huán)保知識競賽的學生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:

(1)這一組的頻數(shù)、頻率分別是多少?

(2)估計這次環(huán)保知識競賽的及格率(60分及以上為及格).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)常年生產(chǎn)一種出口產(chǎn)品,根據(jù)預測可知,進入世紀以來,該產(chǎn)品的產(chǎn)量平穩(wěn)增長.記年為第年,且前年中,第年與年產(chǎn)量萬件之間的關系如下表所示:

近似符合以下三種函數(shù)模型之一:,,

(1)找出你認為最適合的函數(shù)模型,并說明理由,然后選取其中你認為最適合的數(shù)據(jù)求出相應的解析式;

(2)因遭受某國對該產(chǎn)品進行反傾銷的影響,年的年產(chǎn)量比預計減少,試根據(jù)所建立的函數(shù)模型,確定年的年產(chǎn)量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司將進貨單價為8元一個的商品按10元一個出售,每天可以賣出100個,若這種商品的售價每個上漲1元,則銷售量就減少10個.

1)求售價為13元時每天的銷售利潤;

2)求售價定為多少元時,每天的銷售利潤最大,并求最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)討論的單調(diào)性;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某小區(qū)為了調(diào)查居民的生活水平,隨機從小區(qū)住戶中抽取個家庭,得到數(shù)據(jù)如下:

家庭編號

1

2

3

4

5

6

月收入x(千元)

20

30

35

40

48

55

月支出y(千元)

4

5

6

8

8

11

參考公式:回歸直線的方程是:,其中, .

(1)據(jù)題中數(shù)據(jù),求月支出(千元)關于月收入(千元)的線性回歸方程(保留一位小數(shù));

(2)從這個家庭中隨機抽取個,求月支出都少于萬元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調(diào)研可知:甲城市收益P與投入(單位:萬元)滿足,乙城市收益Q與投入(單位:萬元)滿足,設甲城市的投入為(單位:萬元),兩個城市的總收益為(單位:萬元).

(1)當甲城市投資50萬元時,求此時公司總收益;

(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合Z={(x,y)|x∈[0,2],y[-1,1]}.

(1)若x,yZ,求x+y≥0的概率;

(2)若x,yR,求x+y≥0的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省確定從2021年開始,高考采用“”的模式,取消文理分科,即“3”包括語文、數(shù)學、外語,為必考科目;“1”表示從物理、歷史中任選一門;“2”則是從生物、化學、地理、政治中選擇兩門,共計六門考試科目.某高中從高一年級2000名學生(其中女生900人)中,采用分層抽樣的方法抽取名學生進行調(diào)查.

(1)已知抽取的名學生中含男生110人,求的值及抽取到的女生人數(shù);

(2)學校計劃在高二上學期開設選修中的“物理”和“歷史”兩個科目,為了了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的n名學生進行問卷調(diào)查(假定每名學生在這兩個科目中必須選擇一個科目且只能選擇一個科目).下表是根據(jù)調(diào)查結果得到的列聯(lián)表,請將列聯(lián)表補充完整,并判斷是否有99.5%的把握認為選擇科目與性別有關?

說明你的理由;

(3)在(2)的條件下,從抽取的選擇“物理”的學生中按分層抽樣抽取6人,再從這6名學生中抽取2人,對“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.

附:,其中.

查看答案和解析>>

同步練習冊答案