【題目】我國(guó)古代科學(xué)家祖沖之兒子祖暅在實(shí)踐的基礎(chǔ)上提出了體積計(jì)算的原理:“冪勢(shì)既同,則積不容異”(“冪”是截面積,“勢(shì)”是幾何體的高),意思是兩個(gè)同高的幾何體,如在等高處截面的面積恒相等,則它們的體積相等.已知某不規(guī)則幾何體與如圖所示的三視圖所表示的幾何體滿足“冪勢(shì)既同”,則該不規(guī)則幾何體的體積為( )

A. B. C. D.

【答案】A

【解析】

首項(xiàng)把三視圖轉(zhuǎn)換為幾何體,得該幾何體表示左邊是一個(gè)棱長(zhǎng)為2的正方體,右邊是一個(gè)長(zhǎng)為1,寬和高為2的長(zhǎng)方體截去一個(gè)底面半徑為1,高為2的半圓柱,進(jìn)一步利用幾何體的體積公式,即可求解,得到答案.

根據(jù)改定的幾何體的三視圖,可得該幾何體表示左邊是一個(gè)棱長(zhǎng)為2的正方體,右邊是一個(gè)長(zhǎng)為1,寬和高為2的長(zhǎng)方體截去一個(gè)底面半徑為1,高為2的半圓柱,

所以幾何體的體積為,故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在實(shí)數(shù)集上的可導(dǎo)函數(shù)是偶函數(shù),若對(duì)任意實(shí)數(shù)都有恒成立,則使關(guān)于的不等式成立的數(shù)的取值范圍為(

A.B.(-1,1)C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)平面上一點(diǎn),有如下三個(gè)結(jié)論:

①若,則點(diǎn)______;

②若,則點(diǎn)______;

③若,則點(diǎn)______.

回答以下兩個(gè)小問:

1)請(qǐng)你從以下四個(gè)選項(xiàng)中分別選出一項(xiàng),填在相應(yīng)的橫線上.

A. 重心 B. 外心 C. 內(nèi)心 D. 垂心

2)請(qǐng)你證明結(jié)論②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義在R上的兩個(gè)周期函數(shù),的周期為4,的周期為2,且是奇函數(shù).當(dāng)時(shí),,,其中k>0.若在區(qū)間(0,9]上,關(guān)于x的方程8個(gè)不同的實(shí)數(shù)根,則k的取值范圍是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中,側(cè)棱底面 , , , ,且點(diǎn)分別為的中點(diǎn).

1)求證: 平面;

2求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某城市有一條從正西方AO通過市中心O后向東北OB的公路,現(xiàn)要修一條地鐵L,在OA,OB上各設(shè)一站A,B,地鐵在AB部分為直線段,現(xiàn)要求市中心OAB的距離為,設(shè)地鐵在AB部分的總長(zhǎng)度為

按下列要求建立關(guān)系式:

設(shè),將y表示成的函數(shù);

設(shè),m,n表示y

AB兩站分別設(shè)在公路上離中心O多遠(yuǎn)處,才能使AB最短?并求出最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓,圓.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(1)求圓,的極坐標(biāo)方程;

(2)設(shè),分別為上的點(diǎn),若為等邊三角形,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖所示,某窯洞窗口形狀上部是圓弧,下部是一個(gè)矩形,圓弧所在圓的圓心為O,經(jīng)測(cè)量米,米,,現(xiàn)根據(jù)需要把此窯洞窗口形狀改造為矩形,其中EF在邊上,G,H在圓弧.設(shè),矩形的面積為S.

1)求矩形的面積S關(guān)于變量的函數(shù)關(guān)系式;

2)求為何值時(shí),矩形的面積S最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為點(diǎn).為橢圓上的一動(dòng)點(diǎn),面積的最大值為.過點(diǎn)的直線被橢圓截得的線段為,當(dāng)軸時(shí),

(1)求橢圓的方程;

(2)橢圓上任取兩點(diǎn)AB,以,為鄰邊作平行四邊形.若,則是否為定值?若是,求出定值;如不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案