【題目】設(shè)是等差數(shù)列,
,且
,
,
成等比數(shù)列.
(1)求的通項公式;
(2)求的前
項和
的最小值;
(3)若是等差數(shù)列,
與
的公差不相等,且
,問:
和
中除第5項外,還有序號相同且數(shù)值相等的項嗎?(直接寫出結(jié)論即可)
【答案】(1);(2)
,
或
時,
取得最小值
;(3)
和
中除第5項外,沒有序號相同且數(shù)值相等的項.
【解析】
(1)根據(jù)等差數(shù)列的基本量和等比中項的性質(zhì),得到關(guān)于公差的方程,從而得到通項公式;
(2)根據(jù)(1)所得的通項,從而得到前項的和
;
(3)設(shè)的通項,根據(jù)
列出方程組,得到方程組無解,得到答案.
(1)設(shè)等差數(shù)列的公差為
,
.
因為,
,
成等比數(shù)列,
所以,
即有,
解得,
則.
(2)由(1)中等差數(shù)列的通項
,
所以的前
項和
,
由于為自然數(shù),可得
或
時,
取得最小值
.
(3)設(shè)和
中除第5項外,還有序號相同且數(shù)值相等的項,
設(shè)為第項,
和
相同,則
,
設(shè)
根據(jù)與
的公差不相等,可知
由,得
,即
,
由和
相同,得到
則,
即
整理得,
因為且
,所以方程無解.
故和
中除第5項外,沒有序號相同且數(shù)值相等的項.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,函數(shù)在第一象限內(nèi)的圖像如圖所示,試做如下操作:把x軸上的區(qū)間
等分成n個小區(qū)間,在每一個小區(qū)間上作一個小矩形,使矩形的右端點落在函數(shù)
的圖像上.若用
表示第k個矩形的面積,
表示這n個叫矩形的面積總和.
(1)求的表達式;
(2)利用數(shù)學歸納法證明,并求出
的表達式
(3)求的值,并說明
的幾何意義.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)定義在上的函數(shù)
.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若存在,使得
成立,求實數(shù)
的取值范圍;
(3)定義:如果實數(shù)滿足
, 那么稱
比
更接近
.對于(2)中的
及
,問:
和
哪個更接近
?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,對于點
,若函數(shù)
滿足:
,都有
,就稱這個函數(shù)是點
的“限定函數(shù)”.以下函數(shù):①
,②
,③
,④
,其中是原點
的“限定函數(shù)”的序號是______.已知點
在函數(shù)
的圖象上,若函數(shù)
是點
的“限定函數(shù)”,則
的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為
,長軸長為
.
(Ⅰ)求橢圓的標準方程及離心率;
(Ⅱ)過點的直線
與橢圓
交于
,
兩點,若點
滿足
,求證:由點
構(gòu)成的曲線
關(guān)于直線
對稱.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場營銷人員進行某商品的市場營銷調(diào)查時發(fā)現(xiàn),每回饋消費者一定的點數(shù),該商品每天的銷量就會發(fā)生一定的變化,經(jīng)過試點統(tǒng)計得到以下表:
反饋點數(shù)t | 1 | 2 | 3 | 4 | 5 |
銷量(百件)/天 | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(Ⅰ)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合當?shù)卦撋唐蜂N量
(千件)與返還點數(shù)
之間的相關(guān)關(guān)系.試預測若返回6個點時該商品每天的銷量;
(Ⅱ)若節(jié)日期間營銷部對商品進行新一輪調(diào)整.已知某地擬購買該商品的消費群體十分龐大,經(jīng)營銷調(diào)研機構(gòu)對其中的200名消費者的返點數(shù)額的心理預期值進行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:
返還點數(shù)預期值區(qū)間 (百分比) | [1,3) | [3,5) | [5,7) | [7,9) | [9,11) | [11,13) |
頻數(shù) | 20 | 60 | 60 | 30 | 20 | 10 |
將對返點點數(shù)的心理預期值在和
的消費者分別定義為“欲望緊縮型”消費者和“欲望膨脹型”消費者,現(xiàn)采用分層抽樣的方法從位于這兩個區(qū)間的30名消費者中隨機抽取6名,再從這6人中隨機抽取3名進行跟蹤調(diào)查,求抽出的3人中至少有1名“欲望膨脹型”消費者的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知方程的曲線是圓C,
(1)若直線l:與圓C相交于M、N兩點,且
(O為坐標原點),求實數(shù)m的值;
(2)當時,設(shè)T為直線n:
上的動點,過T作圓C的兩條切線TG、TH,切點分別為G、H,求四邊形TGCH而積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點F是拋物線C:y2=2px(p>0)的焦點,若點P(x0,4)在拋物線C上,且.
(1)求拋物線C的方程;
(2)動直線l:x=my+1(mR)與拋物線C相交于A,B兩點,問:在x軸上是否存在定點D(t,0)(其中t≠0),使得kAD+kBD=0,(kAD,kBD分別為直線AD,BD的斜率)若存在,求出點D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為正方形,側(cè)棱
底面
,
為棱
上一點,
(1)當為棱
中點時,求直線
與平面
所成角的正弦值;
(2)是否存在點,使二面角
的余弦值為
?若存在,求
的值.若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com