已知α、β為實數(shù),給出下列三個論斷:
①|(zhì)α-β|≤|α+β|②|α+β|>5  ③|α|>2
2
,|β|>2
2

以其中的兩個論斷為條件,另一個論斷為結(jié)論,寫出你認為正確的命題是
①③⇒②
①③⇒②
分析:觀察知,可由①③推出②,本題是一個開放式題,結(jié)論可能不唯一,本題只證明①③推出②,首先由①|(zhì)α-β|≤|α+β|得出α與β同號,再結(jié)合③得出|α+β|的取值范圍,與5比較即可得到結(jié)論
解答:解:由①|(zhì)α-β|≤|α+β|知,α,β同號,故|α+β|=|α|+|β|
又由③|α|>2
2
,|β|>2
2
可得|α+β|>4
2

又4
2
≈5.6>5
所以有|α+β|>5成立
綜上知①③推出②
故答案為①③⇒②
點評:本題考查不等式的證明,解題的關(guān)鍵是判斷出條件與結(jié)論,本題難點是判斷出那兩個做條件可以保證第三個成立,此類題是開放式題答案可能不唯一,故找出一個正確的來就行,此類題開放式題在近幾年新教材實驗區(qū)基本上不出現(xiàn)了,本題較抽象,不易想
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出命題:已知a、b為實數(shù),若a+b=1,則ab≤
1
4
.在它的逆命題、否命題、逆否命三個命題中,真命題的個數(shù)是( 。
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出命題:已知a、b為實數(shù),若a+b=1,則ab≤
1
4
的逆命題是
已知a、b為實數(shù).若ab≤
1
4
,則a+b=1
已知a、b為實數(shù).若ab≤
1
4
,則a+b=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:

①已知x、y為實數(shù),則x2y2xyx≠-y;

②如果P、q都是r的必要條件,sr的充分條件,qs的充分條件,則Pq的充分但不必要條件;

③設(shè)平面內(nèi)有△ABC,且P表示平面內(nèi)的點,則{P|PA=PB}∩{P|PA=PC}={P是△ABC的垂心};

④如果用P,q分別表示原命題“梯形的四條邊不全相等”的條件和結(jié)論,那么該原命題的“若
q,則P”的形式的命題為:“四條邊完全相等的四邊形不是梯形”.上述命題中正確命題的序號為

A.①③                  B.②④               C.①④                     D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出命題:已知a、b為實數(shù),若a+b=1,則ab≤
1
4
的逆命題是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年山東省魯實中學(xué)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:選擇題

給出命題:已知a、b為實數(shù),若a+b=1,則ab≤.在它的逆命題、否命題、逆否命三個命題中,真命題的個數(shù)是( )
A.3
B.2
C.1
D.0

查看答案和解析>>

同步練習(xí)冊答案