已知z∈三,則命題“z是純虛數(shù)”是命題“
z2
r-z2
∈R
”的______條件.
當(dāng)z是純虛數(shù)時(shí),不妨設(shè)z=bi(b≠0),則
zm
1-zm
=
-bm
1+bm
∈R

反之,
zm
1-zm
∈R
,則z可以取0
故命題“z是純虛數(shù)”是命題“
zm
1-zm
∈R
”的充分不必要條件
故答案為充分不必要.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:
①集合A={ x|0≤x<3且x∈N }的真子集的個(gè)數(shù)是8;
②將三個(gè)數(shù):x=20.2,y=(
1
2
)2
,z=log2
1
2
按從大到小排列正確的是z>x>y;
③函數(shù)f(x)=x2+(3a+1)x+2a在 (-∞,4)上為減函數(shù),則實(shí)數(shù)a的取值范圍是a≤-3;
④已知函數(shù)y=4x-4•2x+1(-1≤x≤2),則函數(shù)的值域?yàn)閇-
3
4
,1];
⑤定義在(-1,0)的函數(shù)f(x)=log(2a)(x+1)滿足f(x)>0的實(shí)數(shù)a的取值范圍是0<a<
1
2
;
⑥關(guān)于x的一元二次方程x2+mx+2m+1=0一個(gè)根大于1,一個(gè)根小于1,則實(shí)數(shù)m的取值范圍m<-
2
3

其中正確的有
③⑤⑥
③⑤⑥
(請(qǐng)把所有滿足題意的序號(hào)都填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:
①集合A={ x|0≤x<3且x∈N }的真子集的個(gè)數(shù)是8;
②關(guān)于x的一元二次方程x2+mx+2m+1=0一個(gè)根大于1,一個(gè)根小于1,則實(shí)數(shù)m的取值范圍m<-
2
3
;
③函數(shù)f(x)=x2+(3a+1)x+2a在 (-∞,4)上為減函數(shù),則實(shí)數(shù)a的取值范圍是a≤3;
④已知函數(shù)y=4x-4•2x+1(-1≤x≤2),則函數(shù)的值域?yàn)閇-
3
4
,1];
⑤定義在(-1,0)的函數(shù)f(x)=log(2a)(x+1)滿足f(x)>0的a的取值范圍是(0,
1
2
);
⑥將三個(gè)數(shù):x=20.2,y=(
1
2
)2
,z=log2
1
2

按從大到小排列正確的是z>x>y,其中正確的有
②⑤
②⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列四個(gè)命題中
①已知A、B、C、D是空間的任意四點(diǎn),則
AB
+
BC
+
CD
+
DA
=
0

②若{
a
,
b
,
c
}為空間的一組基底,則{
a
+
b
,
b
+
c
c
+
a
}也構(gòu)成空間的一組基底.
|(
a
b
)|•
c
=|
a
|•|
b
|•|
c
|

④對(duì)于空間的任意一點(diǎn)O和不共線的三點(diǎn)A、B、C,若
OP
=x
OA
+y
OB
+z
OC
(其中x,y,z∈R),則P、A、B、C四點(diǎn)共面.
其中正確的個(gè)數(shù)是( 。
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列三個(gè)命題:
①若z1,z2∈C且z1-z2>0,則z1>z2
②如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面上所對(duì)應(yīng)點(diǎn)的軌跡為橢圓.
③已知曲線C:
x2
-
y2
=1
和兩定點(diǎn)F1(-
2
,0)
,F(xiàn)2(
2
,0)
,若P(x,y)是C上的動(dòng)點(diǎn),則||PF1|-|PF2||是定值.
上述命題中正確的個(gè)數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案