【題目】已知函數(shù),

(Ⅰ)當(dāng)時,求曲線在點(diǎn)處的切線方程;

(Ⅱ)當(dāng)時,若在區(qū)間上的最小值為-2,其中是自然對數(shù)的底數(shù),求實(shí)數(shù)的取值范圍;

【答案】(1).

(2).

【解析】分析:(1)求出,由 的值可得切點(diǎn)坐標(biāo),由的值,可得切線斜率,利用點(diǎn)斜式可得曲線在點(diǎn)處的切線方程;(2)分三種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間,根據(jù)單調(diào)性求得函數(shù)最小值,令所求最小值等于,排除不合題意的的取值,即可求得到符合題意實(shí)數(shù)的取值范圍.

詳解(Ⅰ)當(dāng)時,,

因為,所以切線方程是

(Ⅱ)函數(shù)的定義域是

當(dāng)時,

當(dāng)時,所以上的最小值是,滿足條件,于是

②當(dāng),即時,上的最小,即時,上單調(diào)遞增

最小值,不合題意;

③當(dāng),即時,上單調(diào)遞減,所以上的最小值是,不合題意.

綜上所述有,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校餐廳新推出A、B、C、D四款套餐,某一天四款套餐銷售情況的條形圖如下.為了了解同學(xué)對新推出的四款套餐的評價,對每位同學(xué)都進(jìn)行了問卷調(diào)查,然后用分層抽樣的方法從調(diào)查問卷中抽取20份進(jìn)行統(tǒng)計,統(tǒng)計結(jié)果如下面表格所示:

滿意

一般

不滿意

A套餐

50%

25%

25%

B套餐

80%

0

20%

C套餐

50%

50%

0

D套餐

40%

20%

40%

(Ⅰ)若同學(xué)甲選擇的是A款套餐,求甲的調(diào)查問卷被選中的概率;
(Ⅱ)若想從調(diào)查問卷被選中且填寫不滿意的同學(xué)中再選出2人進(jìn)行面談,求這兩人中至少有一人選擇的是D款套餐的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)投入81萬元經(jīng)銷某產(chǎn)品,經(jīng)銷時間共60個月,市場調(diào)研表明,該企業(yè)在經(jīng)銷這個產(chǎn)品期間第x個月的利潤 (單位:萬元),為了獲得更多的利潤,企業(yè)將每月獲得的利潤投入到次月的經(jīng)營中,記第x個月的當(dāng)月利潤率 ,例如:
(1)求g(10);
(2)求第x個月的當(dāng)月利潤率g(x);
(3)該企業(yè)經(jīng)銷此產(chǎn)品期間,哪個月的當(dāng)月利潤率最大,并求該月的當(dāng)月利潤率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在心理學(xué)研究中,常采用對比試驗的方法評價不同心理暗示對人的影響,具體方法如下:將參加試驗的志愿者隨機(jī)分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對比這兩組志愿者接受心理暗示后的結(jié)果來評價兩種心理暗示的作用,現(xiàn)有6名男志愿者和4名女志愿者,從中隨機(jī)抽取5人接受甲種心理暗示,另5人接受乙種心理暗示。

(1)求接受甲種心理暗示的志愿者中包含但不包含的概率;

(2)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次抽樣調(diào)查中測得樣本的5個樣本點(diǎn),數(shù)值如下表:

0.25

0.5

1

2

4

16

12

5

2

1

(1)根據(jù)散點(diǎn)圖判斷,哪一個適宜作為關(guān)于的回歸方程類型?(給出判斷即可,不必說明理由)

(2)根據(jù)(1)的判斷結(jié)果試建立之間的回歸方程.(注意計算結(jié)果保留整數(shù))

(3)由(2)中所得設(shè)z=+,試求z的最小值。

參考數(shù)據(jù)及公式如下:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,且點(diǎn)在橢圓上,為坐標(biāo)原點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程

(2)過橢圓上異于其頂點(diǎn)的任一點(diǎn),作圓的切線,切點(diǎn)分別為不在坐標(biāo)軸上),若直線的橫縱截距分別為,求證:為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)當(dāng)時,求函數(shù)的極小值;

(2)若函數(shù)個零點(diǎn),求實(shí)數(shù)的取值范圍;

(3)在(2)的條件下,若函數(shù)的三個零點(diǎn)分別為,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱ABC-ABC中,AB=BC=,BB=2,ABC=90,E、F分別為AA、CB的中點(diǎn),沿棱柱的表面從EF兩點(diǎn)的最短路徑的長度為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x||x﹣1|≤2,x∈Z},B={x|y=log2(x+1),x∈R},則A∩B=(
A.{﹣1,0,1,2,3}
B.{0,1,2,3}
C.{1,2,3}
D.{﹣1,1,2,3}

查看答案和解析>>

同步練習(xí)冊答案