已知圓的內(nèi)接四邊形ABCD的邊長(zhǎng)分別為AB=2,BC=6, CD=DA=4,
(1)求角A的大。
(2)求四邊形ABCD的面積.
(1)A=120º(2)8
解析試題分析:(1)解三角形問(wèn)題,一般利用正余弦定理進(jìn)行邊角轉(zhuǎn)化. 由面積公式有四邊形ABCD的面積S=S△ABD+S△BCD=AB·AD·sinA+BC·CD·sinC,∵A+C=180º∴sinA=sinC∴S=16sinA.由余弦定理得:BD2=AB2+AD2-2AB·AD·cosA=20-16cosA,BD2=CB2+CD2-2CB·CD·cosC=52-48cosC,∴20-16cosA=52-48cosC解之:cosA=- , 又0º<A<180º, ∴A=120º,(2)由(1)有四邊形ABCD的面積S=16,所以S=16sin120º=8.
解:四邊形ABCD的面積S=S△ABD+S△BCD=AB·AD·sinA+BC·CD·sinC
∵A+C=180º∴sinA=sinC∴S=16sinA.
由余弦定理得:BD2=AB2+AD2-2AB·AD·cosA=20-16cosA,
BD2=CB2+CD2-2CB·CD·cosC=52-48cosC,
∴20-16cosA=52-48cosC解之:cosA=- ,
又0º<A<180º, ∴A=120º,S=16sin120º=8
考點(diǎn):正余弦定理,三角形面積公式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且a=2,.
(1)若b=4,求sin A的值;
(2)若△ABC的面積S△ABC=4,求b,c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知向量,設(shè)函數(shù)
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在中,角、、的對(duì)邊分別為、、,且滿足,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知△ABC中,,,且.
(1)求∠B的值;
(2)若點(diǎn)E,P分別在邊AB,BC上,且AE=4,AP⊥CE,求AP的長(zhǎng);
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com