通常用a、b、c表示△ABC的三個(gè)內(nèi)角∠A、∠B、∠C所對(duì)邊的邊長(zhǎng),R表示△ABC外接圓半徑.
(1)如圖所示,在以O(shè)為圓心,半徑為2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB的長(zhǎng);
(2)在△ABC中,若∠C是鈍角,求證:a2+b2<4R2;
(3)給定三個(gè)正實(shí)數(shù)a、b、R,其中b≤a,問(wèn):a、b、R滿足怎樣的關(guān)系時(shí),以a、b為邊長(zhǎng),R為外接圓半徑的△ABC不存在,存在一個(gè)或兩個(gè)(全等的三角形算作同一個(gè))?在△ABC存在的情況下,用a、b、R表示c.

【答案】分析:(1)由正弦定理知===2R,根據(jù)題目中所給的條件,不難得出弦AB的長(zhǎng);
(2)若∠C是鈍角,故其余弦值小于0,由余弦定理得到a2+b2<c2<(2R)2,即可證得結(jié)果;
(3)根據(jù)圖形進(jìn)行分類討論判斷三角形的形狀與兩邊a,b的關(guān)系,以及與直徑的大小的比較,分成三類討論即可.
解答:解:(1)在△ABC中,BC=2,∠ABC=45°===2R⇒b=2
sinA=∵A為銳角∴A=30°,B=45°
∴C=75°∴AB=2Rsin75°=4sin75°=;
(2)∠C為鈍角,∴cosC<0,且cosC≠1
cosC=<0∴a2+b2<c2<(2R)2
即a2+b2<4R2(8分)
(3)a>2R或a=b=2R時(shí),△ABC不存在
當(dāng)時(shí),A=90,△ABC存在且只有一個(gè)
∴c=
當(dāng)時(shí),∠A=∠B且都是銳角sinA=sinB=時(shí),△ABC存在且只有一個(gè)
∴c=2RsinC=2Rsin2AC=
當(dāng)時(shí),∠B總是銳角,∠A可以是鈍角,可是銳角
∴△ABC存在兩個(gè)
∠A<90°時(shí),
c=
∠A>90°時(shí),
c=
點(diǎn)評(píng):本題考查三角形中的幾何計(jì)算,綜合考查了三角形形狀的判斷,解三角形,三角形的外接圓等知識(shí),綜合性很強(qiáng),尤其是第三問(wèn)需要根據(jù)a,b兩邊以及直徑的大小比較確定三角形的形狀.再在這種情況下求第三邊的表達(dá)式,本解法主觀性較強(qiáng).難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)通常用a、b、c表示△ABC的三個(gè)內(nèi)角∠A、∠B、∠C所對(duì)邊的邊長(zhǎng),R表示△ABC外接圓半徑.
(1)如圖所示,在以O(shè)為圓心,半徑為2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB的長(zhǎng);
(2)在△ABC中,若∠C是鈍角,求證:a2+b2<4R2;
(3)給定三個(gè)正實(shí)數(shù)a、b、R,其中b≤a,問(wèn):a、b、R滿足怎樣的關(guān)系時(shí),以a、b為邊長(zhǎng),R為外接圓半徑的△ABC不存在,存在一個(gè)或兩個(gè)(全等的三角形算作同一個(gè))?在△ABC存在的情況下,用a、b、R表示c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

通常用a、b、c分別表示△ABC的三個(gè)內(nèi)角A,B,C所對(duì)邊的邊長(zhǎng),R表示△ABC的外接圓半徑.
(1)如圖,在以O(shè)為圓心、直徑為8的⊙O中,BC和BA是⊙O的弦,其中BC=4,∠ABC=45°,求弦AB的長(zhǎng);
(2)在△ABC中,若∠C是鈍角,求證:a2+b2<4R2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

(2007上海春,20)通常用a、b、c分別表示△ABC的三個(gè)內(nèi)角AB、C所對(duì)邊的邊長(zhǎng),R表示△ABC的外接圓半徑.

(1)如圖所示,在以O為圓心、半徑為2的⊙O中,BCBA是圓的弦,其中BC=2,∠ABC=45°,求弦AB的長(zhǎng);

(2)在△ABC中,若∠C是鈍角,求證:

(3)給定三個(gè)正實(shí)數(shù)a、bR,其中ba.問(wèn):a、bR滿足怎樣的關(guān)系時(shí),以a、b為邊長(zhǎng),R為外接圓半徑的△ABC不存在、存在一個(gè)或存在兩個(gè)(全等的三角形算作同一個(gè))?在△ABC存在的情況下,用ab、R表示c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年上海市春季高考數(shù)學(xué)試卷(解析版) 題型:解答題

通常用a、b、c表示△ABC的三個(gè)內(nèi)角∠A、∠B、∠C所對(duì)邊的邊長(zhǎng),R表示△ABC外接圓半徑.
(1)如圖所示,在以O(shè)為圓心,半徑為2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB的長(zhǎng);
(2)在△ABC中,若∠C是鈍角,求證:a2+b2<4R2;
(3)給定三個(gè)正實(shí)數(shù)a、b、R,其中b≤a,問(wèn):a、b、R滿足怎樣的關(guān)系時(shí),以a、b為邊長(zhǎng),R為外接圓半徑的△ABC不存在,存在一個(gè)或兩個(gè)(全等的三角形算作同一個(gè))?在△ABC存在的情況下,用a、b、R表示c.

查看答案和解析>>

同步練習(xí)冊(cè)答案