分析 函數(shù)f(x)=x2-cosx為偶函數(shù),f′(x)=2x+sinx,從面臨是到函數(shù)f(x)在[0,$\frac{π}{2}$]上為單調(diào)增函數(shù),在[-$\frac{π}{2}$,0]上為減函數(shù).由此能求出結(jié)果.
解答 解:函數(shù)f(x)=x2-cosx為偶函數(shù),f′(x)=2x+sinx,
當(dāng)0<x≤$\frac{π}{2}$時(shí),0<sinx≤1,0<2x≤π,
∴f′(x)>0,函數(shù)f(x)在[0,$\frac{π}{2}$]上為單調(diào)增函數(shù),
由偶函數(shù)性質(zhì)知函數(shù)在[-$\frac{π}{2}$,0]上為減函數(shù).
當(dāng)x12>x22時(shí),得|x1|>|x2|≥0,
∴f(|x1|)>f(|x2|),
由函數(shù)f(x)在上[-$\frac{π}{2}$,$\frac{π}{2}$]為偶函數(shù)得f(x1)>f(x2),故②成立;
∵$\frac{π}{3}$>-$\frac{π}{3}$,而f($\frac{π}{3}$)=f(-$\frac{π}{3}$),
∴①不成立,同理可知③和⑤均不成立;
∵取x1=-$\frac{π}{3}$,x2=-$\frac{π}{2}$,滿足x1+x2<0,但f(x1)<f(x2),故④不成立.
故能使f(x1)>f(x2)恒成立的條件序號(hào)②.
故答案為:②.
點(diǎn)評(píng) 本題考查能使不等式恒成立的條件的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{1}{12}$ | D. | -$\frac{1}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 9 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{32}$ | B. | $\frac{1}{64}$ | C. | $\frac{1}{128}$ | D. | $\frac{1}{2016}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | af(b)≤bf(a) | B. | bf(a)≤af(b) | C. | af(a)≤bf(b) | D. | bf(b)≤af(a) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com