【題目】下列有關統(tǒng)計知識的四個命題正確的是( )

A. 衡量兩變量之間線性相關關系的相關系數(shù)越接近,說明兩變量間線性關系越密切

B. 在回歸分析中,可以用卡方來刻畫回歸的效果,越大,模型的擬合效果越差

C. 線性回歸方程對應的直線至少經過其樣本數(shù)據(jù)點中的一個點

D. 線性回歸方程中,變量每增加一個單位時,變量平均增加個單位

【答案】A

【解析】分析:利用“卡方”的意義、相關指數(shù)的意義及回歸分析的適用范圍,逐一分析四個答案的真假,可得答案.

詳解:A. 衡量兩變量之間線性相關關系的相關系數(shù)越接近,說明兩變量間線性關系越密切,正確;

B. 在回歸分析中,可以用卡方來刻畫回歸的效果,越大,模型的擬合效果越差,錯誤

對分類變量的隨機變量的觀測值來說, 越大,有關系可信程度越大; 故B錯誤

C. 線性回歸方程對應的直線至少經過其樣本數(shù)據(jù)點中的一個點,錯誤,回歸直線可能不經過其樣本數(shù)據(jù)點中的任何一個點;

D. 線性回歸方程中,變量每增加一個單位時,變量平均增加個單位,錯誤,由回歸方程可知變量每增加一個單位時,變量平均增加個單位.

故選A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某高校數(shù)學系計劃在周六和周日各舉行一次主題不同的心理測試活動,分別由李老師和張老師負責,已知該系共有n位學生,每次活動均需該系k位學生參加(n和k都是固定的正整數(shù)),假設李老師和張老師分別將各自活動通知的信息獨立、隨機地發(fā)給該系k位學生,且所發(fā)信息都能收到,記該系收到李老師或張老師所發(fā)活動通知信息的學生人數(shù)為X.
(1)求該系學生甲收到李老師或張老師所發(fā)活動通知信息的概率;
(2)求使P(X=m)取得最大值的整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某村電費收取有以下兩種方案供農戶選擇:

方案一:每戶每月收取管理費2元,月用電量不超過30度時,每度0.5元;超過30度時,超過部分按每度0.6元收;

方案二:不收管理費,每度0.58元.

1)求方案一收費(元)與用電量(度)間的函數(shù)關系;

2)老王家九月份按方案一交費35元,問老王家該月用電多少度?

3)老王家該月用電量在什么范圍內,選擇方案一比選擇方案二更好?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的參數(shù)方程為 (t為參數(shù)),其中p>0,焦點為F,準線為l.過拋物線上一點M作l的垂線,垂足為E.若|EF|=|MF|,點M的橫坐標是3,則p=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+ )+sin(2x﹣ )+2cos2x﹣1,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[ ]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}是等差數(shù)列,其前n項和為Sn , {bn}是等比數(shù)列,且a1=b1=2,a4+b4=27,S4﹣b4=10.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)記Tn=anb1+an1b2+…+a1bn , n∈N* , 證明:Tn+12=﹣2an+10bn(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2﹣(2m+3x+m2+20

1)若方程有實數(shù)根,求實數(shù)m的取值范圍;

2)若方程兩實數(shù)根分別為x1x2,且滿足x12+x2231+|x1x2|,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學餐飲中心為了了解新生的飲食習慣,在某學院大一年級名學生中進行了抽樣調查發(fā)現(xiàn)喜歡甜品的占.這名學生中南方學生共。南方學生中有人不喜歡甜品.

(1)完成下列列聯(lián)表

喜歡甜品

不喜歡甜品

合計

南方學生

北方學生

合計

(2)根據(jù)表中數(shù)據(jù),問是否有的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;

(3)已知在被調查的南方學生中有名數(shù)學系的學生,其中名不喜歡甜品名物理系的學生,其中名不喜歡甜品.現(xiàn)從這兩個系的學生中,各隨機抽取,記抽出的人中不喜歡甜品的人數(shù)為的分布列和數(shù)學期望.

附:.

0.15

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)(簡稱系統(tǒng))A和B,系統(tǒng)A和B在任意時刻發(fā)生故障的概率分別為 和p.
(1)若在任意時刻至少有一個系統(tǒng)不發(fā)生故障的概率為 ,求p的值;
(2)設系統(tǒng)A在3次相互獨立的檢測中不發(fā)生故障的次數(shù)為隨機變量ξ,求ξ的概率分布列及數(shù)學期望Eξ.

查看答案和解析>>

同步練習冊答案