【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當x>0時,函數(shù)f(x)的解析式為
(1)求當x<0時函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(0,+∞)上的是減函數(shù).

【答案】解:(1)當x<0時,﹣x>0,
∵當x>0時,函數(shù)f(x)的解析式為,
∴f(﹣x)=﹣1=﹣﹣1,
由偶函數(shù)可知當x<0時,f(x)=f(﹣x)=﹣﹣1;
(2)設(shè)x1 , x2是(0,+∞)上任意兩個實數(shù),且x1<x2
則f(x1)﹣f(x2)=﹣1﹣+1=,
由x1 , x2的范圍和大小關(guān)系可得f(x1)﹣f(x2)=>0,
∴f(x1)>f(x2),故f(x)在(0,+∞)上的是減函數(shù)
【解析】(1)當x<0時,﹣x>0,整體代入已知式子由偶函數(shù)可得;
(2)設(shè)x1 , x2是(0,+∞)上任意兩個實數(shù),且x1<x2 , 作差判斷f(x1)﹣f(x2)的符號可得.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖在四面體ABCD中,若截面PQMN是正方形,則在下列命題中正確的有 .(填上所有正確命題的序號)
①AC⊥BD
②AC=BD
③AC∥截面PQMN
④異面直線PM與BD所成的角為45°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 的中點,如圖 2.

(1)求證: 平面;

(2)求證: 平面

(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:x2+y2+2x﹣4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程;
(2)從圓C外一點P(x1 , y1)向該圓引一條切線,切點為M,O為坐標原點,且有|PM|=|PO|,求使得|PM|取得最小值的點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P—ABCD中,底面ABCD是直角梯形,∠DAB=90°,AD//BC,且BC⊥PB,△PAB是等邊三角形,DA=AB=2,BC=AD,E是線段AB的中點.

(I)求證:PE⊥CD;

(II)求PC與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關(guān)于關(guān)于x的不等式ax2+bx+c<0的解集為(﹣∞,﹣2)∪(﹣ ,+∞),則不等式ax2﹣bx+c>0的解集為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經(jīng)過變換后得曲線.

(1)求的方程;

(2)若為曲線上兩點, 為坐標原點,直線的斜率分別為,求直線被圓截得弦長的最大值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在長方體ABCD﹣A1B1C1D1中,已知DA=DC=4,DD1=3,求直線A1B與平面ACC1A1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,g(x)=ax﹣3.
(1)當a=l時,確定函數(shù)h(x)=f(x)﹣g(x)在(0,+∞)上的單調(diào)性;
(2)若對任意x∈[0,4],總存在x0∈[﹣2,2],使得g(x0)=f(x)成立,求 實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案