設(shè)
a
b
、
c
都是單位向量,且
a
b
=0,則(
a
+
b
)•(
b
+
c
)的最大值為
1+
2
1+
2
分析:根據(jù)題意設(shè)
a
=(1,0),
b
=(0,1),
c
=(cosθ,sinθ),計(jì)算(
a
+
b
)•(
b
+
c
)=
2
sin(θ+
π
4
)+1≤
2
+1,從而得出結(jié)論.
解答:解:∵
a
、
b
c
都是單位向量,且
a
b
=0,可設(shè)
a
=(1,0),
b
=(0,1),
c
=(cosθ,sinθ).
則(
a
+
b
)•(
b
+
c
)=(1,1))•(cosθ,1+sinθ)=cosθ+1+sinθ=
2
sin(θ+
π
4
)+1≤
2
+1,
故(
a
+
b
)•(
b
+
c
)的最大值為
2
+1
,
故答案為
2
+1
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是平面向量數(shù)量積的運(yùn)算,兩角和差的正弦公式的應(yīng)用,其中,求出(
a
+
b
)•(
b
+
c
)的表達(dá)式,是解答本題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
b
,
c
都是單位向量,且
a
b
的夾角為
2
3
π
,則(
c
-
a
)•(
c
-
b
)
的最小值為
-
1
2
-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①y=1是冪函數(shù);
②函數(shù)f(x)=2x-log2x的零點(diǎn)有1個(gè);
③實(shí)數(shù)a=0.2 
2
,b=log 
2
0.2,c=
2
0.2
的大小關(guān)系是b<c<a.
④設(shè)
a
b
,
c
,是單位向量,且
a
b
=0,則(
a
-
c
)•(
b
-
c
)的最大值為1+
2
          
⑤函數(shù)y=x+
1
x-1
(x≥3)的最小值為3.
其中真命題的序號(hào)是
(把你認(rèn)為正確命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
b
、
c
都是單位向量且
a
b
=0,則(
a
+
b
)•(
b
+
c
)的最大值為
1+
2
1+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)
a
,
b
c
都是單位向量,且
a
b
的夾角為
2
3
π
,則(
c
-
a
)•(
c
-
b
)
的最小值為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案