數(shù)列{an}的前n項和為sn,a1=1,an+1=2sn+1,(n≥1),等差數(shù)列{bn}的各項均為正數(shù),前n項和為Bn,且B3=15,又a1+b1,a2+b2,a3+b3成等比數(shù)列.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)若Tn=a1b1+a2b2+a3b3+…+anbn,求Tn的表達式.

解:(Ⅰ)∵a1=1,an+1=2Sn+1(n∈N*),
∴an=2Sn-1+1(n∈N*,n>1),
∴an+1-an=2(Sn-Sn-1),
∴an+1-an=2an,
∴an+1=3an(n∈N*,n>1)(2分)
而a2=2a1+1=3=3a1,
∴an+1=3an(n∈N*
∴數(shù)列{an}是以1為首項,3為公比的等比數(shù)列,
∴an=3n-1(n∈N*)(4分)
∴a1=1,a2=3,a3=9,
在等差數(shù)列{bn}中,
∵b1+b2+b3=15,
∴b2=5.
又因a1+b1、a2+b2、a3+b3成等比數(shù)列,設等差數(shù)列{bn}的公差為d,
∴(1+5-d)(9+5+d)=64(6分)
解得d=-10,或d=2,
∵bn>0(n∈N*),
∴舍去d=-10,取d=2,
∴b1=3,
∴bn=2n+1(n∈N*).(8分)
(Ⅱ)∵Tn=a1b1+a2b2+a3b3+…+anbn,
∴由(Ⅰ)知Tn=3×1+5×3+7×32++(2n-1)3n-2+(2n+1)3n-1,①
3Tn=3×3+5×32+7×33++(2n-1)3n-1+(2n+1)3n,②(10分)
①-②得-2Tn=3×1+2×3+2×32+2×33++2×3n-1-(2n+1)3n,(12分)
=3+2(3+32+33++3n-1)-(2n+1)3n
=3+2×-(2n+1)3n=3n-(2n+1)3n=-2n•3n,
∴Tn=n•3n.(14分)
分析:(1)求解時要利用恒等式an+1=2Sn+1構造出an=2Sn-1+1兩者作差得出an+1=3an,此處是難點,數(shù)列的{bn}的求解根據(jù)題意列出方程求d即可.
(II)數(shù)列求和是一個典型的錯位相減法求和技巧的運用,借助錯位相減法能求出結(jié)果.
點評:本題考查數(shù)列知識的綜合運用,技巧性較強,是數(shù)列中的一道難度較高的題,對答題者基礎知識與基本技能要求較高,是用來提高學生數(shù)列素養(yǎng)的一道好題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設等比數(shù)列{an}的公比q≠1,Sn表示數(shù)列{an}的前n項的和,Tn表示數(shù)列{an}的前n項的乘積,Tn(k)表示{an}的前n項中除去第k項后剩余的n-1項的乘積,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),則數(shù)列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n項的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}的通項an=
1
pn-q
,實數(shù)p,q滿足p>q>0且p>1,sn為數(shù)列{an}的前n項和.
(1)求證:當n≥2時,pan<an-1;
(2)求證sn
p
(p-1)(p-q)
(1-
1
pn
)
;
(3)若an=
1
(2n-1)(2n+1-1)
,求證sn
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn是數(shù)列{an}的前n項和,an>0,Sn=
a
2
n
+an
2
,n∈N*,
(1)求證:{an}是等差數(shù)列;
(2)若數(shù)列{bn}滿足b1=2,bn+1=2an+bn,求數(shù)列{bn}的通項公式bn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•商丘二模)數(shù)列{an}的前n項和為Sn,若數(shù)列{an}的各項按如下規(guī)律排列:
1
2
1
3
,
2
3
,
1
4
2
4
,
3
4
,
1
5
2
5
,
3
5
4
5
…,
1
n
,
2
n
,…,
n-1
n
,…有如下運算和結(jié)論:
①a24=
3
8
;
②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數(shù)列;
③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項和為Tn=
n2+n
4
;
④若存在正整數(shù)k,使Sk<10,Sk+1≥10,則ak=
5
7

其中正確的結(jié)論是
①③④
①③④
.(將你認為正確的結(jié)論序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①若數(shù)列{an}的前n項和Sn=2n+1,則數(shù)列{an}為等比數(shù)列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么滿足條件的△ABC有兩解;
③設函數(shù)f(x)=x|x-a|+b,則函數(shù)f(x)為奇函數(shù)的充要條件是a2+b2=0;
④設直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線所能圍成的正三角形面積都相等.
其中真命題的序號是

查看答案和解析>>

同步練習冊答案