已知不等式組表示的平面區(qū)域?yàn)镸若直線y=kx-3k+1與平面區(qū)域M有公共點(diǎn),則k的取值范圍是   
【答案】分析:本題考查的知識(shí)點(diǎn)是簡單線性規(guī)劃的應(yīng)用,我們要先畫出滿足約束條件 的平面區(qū)域,然后分析平面區(qū)域里各個(gè)角點(diǎn),然后將其代入y=kx-3k+1中,求出y=kx-3k+1對(duì)應(yīng)的k的端點(diǎn)值即可.
解答:解:滿足約束條件 的平面區(qū)域如圖示:
因?yàn)閥=kx-3k+1過定點(diǎn)A(3,1).
所以當(dāng)y=kx-3k+1過點(diǎn)B(0,2)時(shí),找到k=-
當(dāng)y=kx-3k+1過點(diǎn)(1,1)時(shí),對(duì)應(yīng)k=0.
又因?yàn)橹本y=kx-3k+1與平面區(qū)域M有公共點(diǎn).
所以-≤k<0.
故答案為:[-,0).
點(diǎn)評(píng):在解決線性規(guī)劃的小題時(shí),我們常用“角點(diǎn)法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個(gè)角點(diǎn)的坐標(biāo)⇒③將坐標(biāo)逐一代入目標(biāo)函數(shù)⇒④驗(yàn)證,求出最優(yōu)解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:廣東省培正中學(xué)2011-2012學(xué)年高二第一學(xué)期期中考考試數(shù)學(xué)理科試題 題型:044

已知(x,y)(x,y∈R)為平面上點(diǎn)M的坐標(biāo).

(1)設(shè)集合P={―4,―3,―2,0},Q={0,1,2},從集合P中隨機(jī)取一個(gè)數(shù)作為x,從集合Q中隨機(jī)取一個(gè)數(shù)作為y,求點(diǎn)M在y軸上的概率;

(2)設(shè)x∈[0,3],y∈[0,4],求點(diǎn)M落在不等式組:所表示的平面區(qū)域內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案