巳知無窮數(shù)列{an}的各項(xiàng)均為正整數(shù),Sn為數(shù)列{an}的前n項(xiàng)和.
(Ⅰ)若數(shù)列{an}是等差數(shù)列,且對任意正整數(shù)n都有Sn3=(Sn)3成立,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)對任意正整數(shù)n,從集合{a1,a2,a3,…an}中不重復(fù)地任取若干個數(shù),這些數(shù)之間經(jīng)過加減運(yùn)算后所得數(shù)的絕對值為互不相同的正整數(shù),且這些正整數(shù)與a1,a2,a3,…an一起恰好是1至Sn全體正整數(shù)組成的集合.
 (1)求a1,a2,的值;
 (2)求數(shù)列{an}的通項(xiàng)公式.
分析:(Ⅰ)寫出等差數(shù)列{an}的前n項(xiàng)和,結(jié)合對任意正整數(shù)n都有Sn3=(Sn)3成立列式求取首項(xiàng)和公差,從而得到兩個無窮等差數(shù)列的通項(xiàng)公式;
(Ⅱ)(1)由題意利用用集合相等求得a1,a2的值;
(2)有題意可知,集合{a1,a2,a3,…an}按上述規(guī)則共產(chǎn)生Sn個正整數(shù),而集合{a1,a2,a3,…,an,an+1}按上述規(guī)則共產(chǎn)生Sn+1個正整數(shù)中,
除1,2,…,Sn這Sn個正整數(shù)外,還有an+1,an+1+i,|an+1-i|(i=1,2,…,Sn)共2Sn+1個數(shù).∴Sn+1=Sn+(2Sn+1)=3Sn+1.結(jié)合Sn+1+
1
2
=3(Sn+
1
2
)
求得Sn,然后由Sn-Sn-1求通項(xiàng).
解答:解:(Ⅰ)設(shè)無窮等差數(shù)列{an}的公差為d,則Sn=na1+
n(n-1)d
2
=n[
d
2
n+(a1-
d
2
)]

Sn3=n3[
d
2
n3+(a1-
d
2
)]

(Sn)3=n3[
d
2
n+(a1-
d
2
)]
=n3[
d3
8
n3+3×
d2
4
(a1-
d
2
)n2+3×
d
2
(a1-
d2
2
)n+(a1-
d
2
)3]

∵對任意正整數(shù)n都有Sn3=(Sn)3成立,
d3
8
=
d
2
              ①
3d2
4
(a1-
d
2
)=0  ②
3d
2
(a1-
d
2
)2=0  ③
(a1-
d
2
)3=a1-
d
2

∵數(shù)列{an}的各項(xiàng)均為正數(shù),∴d≥0.
由①可知d=0或d=2,當(dāng)d=0時(shí),由④得a1=1,且同時(shí)滿足②③.
當(dāng)d=2時(shí),由②得a1=
d
2
=1
,且同時(shí)滿足③④.
因此,共有兩個無窮等差數(shù)列滿足條件,通項(xiàng)公式為an=1或an=2n-1;
(Ⅱ)(1)記An={1,2,…,Sn},顯然a1=S1=1.
對于S2=a1+a2=1+a2,有A2={1,2,…,S2}={1,a2,1+a2,|1-a2|}={1,2,3,4},
故1+a2=4,∴a2=3.
(2)有題意可知,集合{a1,a2,a3,…an}按上述規(guī)則共產(chǎn)生Sn個正整數(shù),而集合{a1,a2,a3,…,an,an+1}按上述規(guī)則共產(chǎn)生Sn+1個正整數(shù)中,
除1,2,…,Sn這Sn個正整數(shù)外,還有an+1,an+1+i,|an+1-i|(i=1,2,…,Sn)共2Sn+1個數(shù).
∴Sn+1=Sn+(2Sn+1)=3Sn+1.
Sn+1+
1
2
=3(Sn+
1
2
)

Sn=(S1+
1
2
)•3n-1-
1
2
=
1
2
3n-
1
2

當(dāng)n≥2時(shí),an=Sn-Sn-1=3n-1
而a1=1滿足an=3n-1
故數(shù)列{an}的通項(xiàng)公式為an=3n-1
點(diǎn)評:本題考查了等差數(shù)列的前n項(xiàng)和,考查了由數(shù)列的和求其通項(xiàng)公式,考查了分類討論的數(shù)學(xué)思想方法和數(shù)學(xué)轉(zhuǎn)化思想方法,該題綜合考查了學(xué)生分析問題和解決問題的能力,在數(shù)列試題中屬于難度較大的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

同步練習(xí)冊答案