【題目】若存在實(shí)常數(shù),使得函數(shù)對(duì)其公共定義域上的任意實(shí)數(shù)都滿足: 恒成立,則稱此直線的“隔離直線”,已知函數(shù), ,有下列命題:

內(nèi)單調(diào)遞增;

之間存在“隔離直線”,且的最小值為-4;

之間存在“隔離直線”,且的取值范圍是;

之間存在唯一的“隔離直線”.

其中真命題的個(gè)數(shù)有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】C

【解析】, ,內(nèi)單調(diào)遞增,故正確;,設(shè)的隔離直線為,對(duì)一切實(shí)數(shù)成立,即有對(duì)一切成立,則,,即有,同理可得正確,錯(cuò)誤,函數(shù)的圖象在處有公共點(diǎn),因此存在的隔離直線,那么該直線過(guò)這個(gè)公共點(diǎn),設(shè)隔離直線的斜率為則隔離直線方程為,即,可得,當(dāng)恒成立,只有,此時(shí)直線方程為下面證明, ,當(dāng)時(shí), 當(dāng)時(shí), ;當(dāng)時(shí), ;當(dāng)時(shí), 取到極小值,極小值是,也是最小值, ,函數(shù)存在唯一的隔離直線,正確真命題的個(gè)數(shù)有三個(gè),故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方體,在空間中到三條棱所在直線距離相等的點(diǎn)的個(gè)數(shù)( )

A. 0B. 2C. 3D. 無(wú)數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)慶70周年慶典磅礴而又歡快的場(chǎng)景,仍歷歷在目.已知慶典中某省的游行花車需要用到某類花卉,而該類花卉有甲、乙兩個(gè)品種,花車的設(shè)計(jì)團(tuán)隊(duì)對(duì)這兩個(gè)品種進(jìn)行了檢測(cè).現(xiàn)從兩個(gè)品種中各抽測(cè)了10株的高度,得到如下莖葉圖.下列描述正確的是(

A.甲品種的平均高度大于乙品種的平均高度,且甲品種比乙品種長(zhǎng)的整齊

B.甲品種的平均高度大于乙品種的平均高度,但乙品種比甲品種長(zhǎng)的整齊

C.乙品種的平均高度大于甲品種的平均高度,且乙品種比甲品種長(zhǎng)的整齊

D.乙品種的平均高度大于甲品種的平均高度,但甲品種比乙品種長(zhǎng)的整齊

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為緩減人口老年化帶來(lái)的問(wèn)題,中國(guó)政府在2016年1月1日作出全國(guó)統(tǒng)一實(shí)施全面的“二孩”政策,生“二孩”是目前中國(guó)比較流行的元素某調(diào)查機(jī)構(gòu)對(duì)某校學(xué)生做了一個(gè)是否同意父母生“二孩”抽樣調(diào)查,該調(diào)查機(jī)構(gòu)從該校隨機(jī)抽查了100名不同性別的學(xué)生,調(diào)查統(tǒng)計(jì)他們是同意父母生“二孩”還是反對(duì)父母生“二孩”現(xiàn)已得知100人中同意父母生“二孩”占,統(tǒng)計(jì)情況如表:

性別屬性

同意父母生“二孩”

反對(duì)父母生“二孩”

合計(jì)

男生

10

女生

30

合計(jì)

100

請(qǐng)補(bǔ)充完整上述列聯(lián)表;

根據(jù)以上資料你是否有把握,認(rèn)為是否同意父母生“二孩”與性別有關(guān)?請(qǐng)說(shuō)明理由.

參考公式與數(shù)據(jù):,其中

k

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)某公司生產(chǎn)的商品A每件售價(jià)為5元時(shí),年銷售10萬(wàn)件,

(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高一元,銷量相應(yīng)減少1萬(wàn)件,要使銷售收入不低于原銷售收入,該商品的銷售價(jià)格最多提高多少元?

(2)為了擴(kuò)大該商品的影響力,公司決定對(duì)該商品的生產(chǎn)進(jìn)行技術(shù)革新,將技術(shù)革新后生產(chǎn)的商品售價(jià)提高到每件元,公司擬投入萬(wàn)元作為技改費(fèi)用,投入萬(wàn)元作為宣傳費(fèi)用。試問(wèn):技術(shù)革新后生產(chǎn)的該商品銷售量m至少應(yīng)達(dá)到多少萬(wàn)件時(shí),才可能使技術(shù)革新后的該商品銷售收入等于原銷售收入與總投入之和?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等差數(shù)列中, ,其前項(xiàng)和為.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)設(shè)數(shù)列滿足,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是首項(xiàng)為a,公差為d的等差數(shù)列(d≠0), 是其前n項(xiàng)的和.記,n∈N*,其中c為實(shí)數(shù).

(1)若c=0,且b1,b2,b4成等比數(shù)列,證明:Snkn2Sk(k,n∈N*);

(2)若{}是等差數(shù)列,證明:c=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)對(duì)任意的均有則稱函數(shù)具有性質(zhì)

Ⅰ)判斷下面兩個(gè)函數(shù)是否具有性質(zhì)并說(shuō)明理由.

Ⅱ)若函數(shù)具有性質(zhì),

求證:對(duì)任意

Ⅲ)在(Ⅱ)的條件下,是否對(duì)任意均有若成立,給出證明;若不成立,給出反例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率等于,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn).

)求橢圓C的方程;

)點(diǎn)P(2,3), Q2-3)在橢圓上,A,B是橢圓上位于直線PQ兩惻的動(dòng)點(diǎn),

若直線AB的斜率為,求四邊形APBQ面積的最大值;

當(dāng)AB運(yùn)動(dòng)時(shí),滿足于∠APQ=∠BPQ,試問(wèn)直線AB的斜率是否為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案