用函數(shù)單調(diào)性的定義證明函數(shù)y=x2+2x在x∈[0,+∞)是單調(diào)遞增函數(shù).

證明:設(shè)任意的x1,x2∈[0,+∞),且x1<x2,
所以有f(x1)-f(x2)-f(x2)==(x1+x2)(x1-x2)+2(x1-x2)=(x1-x2)(x1+x2+2),
因?yàn)?<x1<x2,
所以x1-x2<0,x1+x2+2>0,
所以f(x1)-f(x2)<0,即f(x1)<f(x2),
故函數(shù)y=x2+2x在x∈[0,+∞)是單調(diào)遞增函數(shù).
分析:根據(jù)函數(shù)單調(diào)性的定義按五步走證明即可.
點(diǎn)評(píng):本題考察函數(shù)單調(diào)性的判斷與證明,解析式比較簡(jiǎn)單,故定義證明時(shí)運(yùn)算較簡(jiǎn)單,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

17、用函數(shù)單調(diào)性的定義證明:函數(shù)y=|x-1|在區(qū)間(-∞,0)上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=(x-a)2,g(x)=x,x∈R,a為實(shí)常數(shù).
(1)若a>0,設(shè)F(x)=
f(x)g(x)
,x≠0,用函數(shù)單調(diào)性的定義證明:函數(shù)F(x)在區(qū)間[a,+∞)上是增函數(shù);
(2)設(shè)關(guān)于x的方程f(x)=|g(x)|在R上恰好有三個(gè)不相等的實(shí)數(shù)解,求a的值所組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)
f(x)=
1-x
&(x∈(-∞,1]
).
(1)求函數(shù)y=f(2x)的定義域;
(2)用函數(shù)單調(diào)性的定義證明
f(x)=
1-x
&(x∈(-∞,1]
)在其定義域上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)對(duì)x≠0的任意實(shí)數(shù),恒有f(x)-2f(
1
x
)=x2+1
成立.
(1)求函數(shù)f(x)的解析式;
(2)用函數(shù)單調(diào)性的定義證明函數(shù)f(x)在(0,
42
]
上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

偶函數(shù)f(x)在(-∞,0)上是增函數(shù),問(wèn)它在(0,+∞)是增函數(shù)還是減函數(shù)?能否用函數(shù)單調(diào)性的定義證明你的結(jié)論?

查看答案和解析>>

同步練習(xí)冊(cè)答案