已知拋物線M:y2=4x,圓N:(x-1)2+y2=r2(其中r為常數(shù),r>0).過點(1,0)的直線l交圓N于C、D兩點,交拋物線M于A、B兩點,且滿足|AC|=|BD|的直線l只有三條的必要條件是:下面哪一個是符合條件的
 

(1)r∈(0,1]
(2)r∈(1,2]
(3)r∈(
3
2
,4)
(4)r∈[
3
2
,+∞)
考點:拋物線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:分l⊥x軸與l不與x軸垂直兩種情況討論,當l不與x軸垂直時,設直線l:x=my+1,與拋物線方程y2=4x聯(lián)立,設A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),結(jié)合題意,可求得4
m2+1
=
2r
m2+1
,繼而可得r>2,從而可得答案.
解答: 解:①當l⊥x軸時,過x=1與拋物線交于(1,土2),與圓交于(1,土r),滿足題設.
②當l不與x軸垂直時,設直線l:x=my+1,(1)
代入y2=4x,得y2-4my-4=0,
△=16(m2+1),
把(1)代入:(x-1)2+y2=r2得y2=
r2
m2+1
,
設A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),
∵|AC|=|BD|,
∴y1-y3=y2-y4,y1-y2=y3-y4
∴4
m2+1
=
2r
m2+1
,
即r=2(m2+1)>2,
即r>2時,l僅有三條.
考查四個選項,只有D中的區(qū)間包含了(2,+∞)
故答案為:(4).
點評:本題考查直線與圓錐曲線的位置關(guān)系,考查等價轉(zhuǎn)化思想與分類討論思想,求得r=2(m2+1)是關(guān)鍵,考查綜合運算能力,屬于難題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)過點(2,0),焦距為2
3

(Ⅰ)求橢圓Γ的方程;
(Ⅱ)設斜率為k的直線l過點C(-1,0)且交橢圓Γ于A,B兩點,試探究橢圓Γ上是否存在點P,使得四邊形OAPB為平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=mx2+x-2013在區(qū)間(-∞,1)上是單調(diào)函數(shù),則實數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=2013tan(πx-
π
3
)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義:min{a,b}=
a,a≤b
b,a>b
,在區(qū)域
0≤x≤2
0≤y≤6
內(nèi)任取一點P(x,y),則x、y滿足min{x2+x+2y,x+y+4}=x2+x+2y的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:
-
3
4
tanβ
1+
3
4
tanβ
=1,則tanβ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“x∈{3,a}”是不等式2x2-5x-3≥0成立的一個充分不必要條件,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的程序框圖中,當輸入x的值為32時,輸出x的值為(  )
A、1B、3C、5D、7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設Sn是等差數(shù)列{an}的前n項和,若
S11
S9
=1,則
a6
a5
=( 。
A、1
B、-1
C、
9
11
D、
1
2

查看答案和解析>>

同步練習冊答案