18.在下列函數(shù)中,圖象關于原點對稱且對任意x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$>0的是(  )
A.y=xsinxB.y=$\frac{{e}^{x}+{e}^{-x}}{2}$C.y=ln$\frac{1-x}{1+x}$D.y=x3+x

分析 若函數(shù)的圖象關于原點對稱,則函數(shù)為奇函數(shù),若對任意x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$>0,則函數(shù)在[0,+∞)上為增函數(shù);逐一分析給定四個函數(shù)的奇偶性和單調性,可得答案.

解答 解:若函數(shù)的圖象關于原點對稱,則函數(shù)為奇函數(shù),
若對任意x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$>0,則函數(shù)在[0,+∞)上為增函數(shù);
A中,函數(shù)y=xsinx為偶函數(shù),不滿足條件;
B中,函數(shù)y=$\frac{{e}^{x}+{e}^{-x}}{2}$為偶函數(shù),不滿足條件;
C中,函數(shù)y=ln$\frac{1-x}{1+x}$為奇函數(shù),但當x≥1時,解析式無意義,不滿足條件;
D中,函數(shù)y=x3+x為奇函數(shù),y′=3x2+1>0恒成立,故函數(shù)在[0,+∞)上為增函數(shù),滿足條件;
故選:D

點評 本題考查的知識點是函數(shù)的奇偶性,利用導數(shù)判斷函數(shù)的單調性,正確理解題目給定的兩個條件的含義,是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知方程ax2+x+b=0.
(1)若方程的解集為{1},求實數(shù)a,b的值;
(2)若方程的解集為{1,3},求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{lnx}{a^2}-x$.
(I)若曲線f(x)在(1,f(1))處的切線與x軸平行,求函數(shù)f(x)的單調區(qū)間;
(II)當f(x)的最大值大于1-$\frac{2}{a^2}$時,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.(1)已知數(shù)列{an}:a1=1,an+1+an=4,求數(shù)列{an}的通項公式;
(2)求函數(shù)$f(x)=\sqrt{1-x}+\sqrt{x}$的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設命題p:|2x-3|<1;命題q:lg2x-(2t+l)lgx+t(t+l)≤0,
(1)若命題q所表示不等式的解集為A={x|l0≤x≤100},求實數(shù)t的值;
(2)若?p是?q的必要不充分條件,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在下列命題中:其中正確命題的個數(shù)為0
①若$\overrightarrow a$、$\overrightarrow b$共線,則$\overrightarrow a$、$\overrightarrow b$所在的直線平行;
②$\overrightarrow a$、$\overrightarrow b$所在的直線是異面直線,則$\overrightarrow a$、$\overrightarrow b$定不共面;
③若$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$三個向量兩兩共面,則$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$三個向量一定也共面;
④已知三個向量$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$,則空間任意一個向量$\overrightarrow p$總可以唯一表示為$\overrightarrow p=x\overrightarrow a+y\overrightarrow b+z\overrightarrow c$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設等比數(shù)列{an}的各項均為正數(shù),公比為q,前n項和為Sn,若對?x∈N+,有$\frac{{S}_{2n}}{{S}_{n}}$<5,則q的取值范圍是( 。
A.(0,1]B.(1,2)C.[1,$\sqrt{2}$)D.($\sqrt{2}$,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如圖,已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點分別為F1,F(xiàn)2,|F1F2|=2$\sqrt{3}$,P是雙曲線右支上的一點,F(xiàn)2P與y軸交于點A,△APF1的內切圓左邊PF1上的切點為Q,若|PQ|=1,則雙曲線的離心率是( 。
A.2B.3C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.函數(shù)f(x)=loga(5-ax)(a>0,a≠1)在[1,3]上是減函數(shù),則a的取值范圍是( 。
A.$[\frac{5}{3},+∞)$B.$(\frac{1}{5},1)$C.$(1,\frac{5}{3})$D.$(1,\frac{5}{3}]$

查看答案和解析>>

同步練習冊答案