【題目】某幼兒園舉辦“yue”主題系列活動(dòng)——“悅”動(dòng)越健康親子運(yùn)動(dòng)打卡活動(dòng),為了解小朋友堅(jiān)持打卡的情況,對(duì)該幼兒園所有小朋友進(jìn)行了調(diào)查,調(diào)查結(jié)果如下表:
打卡天數(shù) | 17 | 18 | 19 | 20 | 21 |
男生人數(shù) | 3 | 5 | 3 | 7 | 2 |
女生人數(shù) | 3 | 5 | 5 | 7 | 3 |
(1)根據(jù)上表數(shù)據(jù),求該幼兒園男生平均打卡的天數(shù);
(2)若從打卡21天的小朋友中任選2人交流心得,求選到男生和女生各1人的概率.
【答案】(1);(2)
【解析】
(1)求出所有男生打卡天數(shù)總和再除以男生人數(shù)即平均打卡天數(shù);
(2)打卡21天的小朋友中男生2人,女生3人,任選2人交流心得,求出基本事件總數(shù)和選到男生和女生各1人所包含的基本事件個(gè)數(shù)即可求解概率.
(1)男生平均打卡的天數(shù).
(2)男生打卡21天的2人記為,
,女生打卡21天的3人記為
,
,
,
則從打卡21天的小朋友中任選2人的情況有,
,
,
,
,
,
,
,
,
,共10種,
其中男生和女生各1人的情況有,
,
,
,
,
,共6種.
故所求概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知、
是橢圓和雙曲線(xiàn)的公共焦點(diǎn),
是他們的一個(gè)公共點(diǎn),且
,則橢圓和雙曲線(xiàn)的離心率的倒數(shù)之和的最大值為___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:的兩個(gè)焦點(diǎn)分別為
,點(diǎn)M(1,0)與橢圓短軸的兩個(gè)端點(diǎn)的連線(xiàn)相互垂直.
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)M(1,0)的直線(xiàn)與橢圓C相交于A、B兩點(diǎn),設(shè)點(diǎn)N(3,2),記直線(xiàn)AN、BN的斜率分別為k1、k2,求證:k1+k2為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若公差為的無(wú)窮等差數(shù)列
的前
項(xiàng)和為
,則下列說(shuō)法:(1)若
,則數(shù)列
有最大項(xiàng);(2)若數(shù)列
有最大項(xiàng),則
;(3)若數(shù)列
是遞增數(shù)列,則對(duì)任意
都有
;(4)若對(duì)任意
都有
,則數(shù)列
是遞增數(shù)列;其中正確的是______.(選序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)說(shuō)法,其中正確的是( )
A.命題“若,則
”的否命題是“若
,則
”
B.“”是“雙曲線(xiàn)
的離心率大于
”的充要條件
C.命題“,
”的否定是“
,
”
D.命題“在中,若
,則
是銳角三角形”的逆否命題是假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求
的單調(diào)性;
(2)若在區(qū)間
上有零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),拋物線(xiàn)C:y2=8x上一點(diǎn)A到焦點(diǎn)F的距離為6,若點(diǎn)P為拋物線(xiàn)C準(zhǔn)線(xiàn)上的動(dòng)點(diǎn),則|OP|+|AP|的最小值為( �。�
A. 4B. C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面
為正方形,側(cè)棱
底面
,
為棱
的中點(diǎn),
.
(Ⅰ)求證:;
(Ⅱ)求直線(xiàn)與平面
所成角的正弦值;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,
平面
,點(diǎn)
為
中點(diǎn),底面
為梯形,
,
,
.
(1)證明:平面
;
(2)若四棱錐的體積為4,求點(diǎn)
到平面
的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com