若函數(shù)f(x)=sinxcosx,下列結論中正確的是(  )
A、函數(shù)f(x)的圖象關于原點對稱
B、函數(shù)f(x)最小正周期為2π
C、函數(shù)f(x)為偶函數(shù)
D、函數(shù)f(x)的最大值為1
考點:二倍角的正弦
專題:三角函數(shù)的圖像與性質
分析:由已知中函數(shù)f(x)=sinxcosx=
1
2
sin2x,根據(jù)正弦函數(shù)的圖象和性質可得該函數(shù)為奇函數(shù),最小正周期T=π,最大值=
1
2
,逐一分析四個答案,可得結論.
解答: 解:∵f(x)=sinxcosx=
1
2
sin2x,
∴該函數(shù)為奇函數(shù),最小正周期T=π,最大值=
1
2

故C,B,D錯誤,A正確
故選:A
點評:本題考查的知識點是正弦函數(shù)的對稱性,二倍角的正弦,三角函數(shù)的周期性及其求法,正弦函數(shù)的奇偶性,其中熟練掌握正弦型函數(shù)的圖象和性質是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2+ax+b的值域為A,關于x的不等式f(x)<c的解集為B.
(1)若a=4,b=-2.c=3,求集合A與B;
(2)若A=[0,+∞),B=(m,m+6),求實數(shù)c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=6cos2
ωx
2
+
3
ωx
2
+
3
sinωx-3(ω>0)在一個周期內的圖象如圖所示,A為圖象的最高點,B,C為圖象與x軸的交點,且△ABC為正三角形.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調遞增區(qū)間和對稱中心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)
-i
1-i
=(  )
A、-
1
2
-
1
2
i
B、-
1
2
+
1
2
i
C、
1
2
+
1
2
i
D、
1
2
-
1
2
i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,則正確表示集合M={x∈R|(x-1)(x-2)>0}和N={x∈R|x2+x<0}的關系的韋恩(Venn)圖是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={y|y=x2-1,x∈R},集合N={x|y=
2-x2
,x∈R},則(∁RM)∩N(  )
A、-
2
,-1)
B、[-
2
,-1)
C、[-
2
,1)
D、[-
2
,-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z=
1+2i
3-i
,i是虛數(shù)單位,則復數(shù)虛部是( 。
A、
1
10
i
B、
1
10
C、
7
10
D、
7
10
i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若sin
θ
2
-2cos
θ
2
=0,則tanθ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合A={x∈N|3<x<9},B={3,5,7,8},則A∪B中的元素的個數(shù)有( 。
A、0B、2C、4D、6

查看答案和解析>>

同步練習冊答案