已知平行四邊形的兩條邊所在直線的方程分別是,, 且它的對角線的交點(diǎn)是M(3,3),求這個(gè)平行四邊形其它兩邊所在直線的方程.

其他兩邊所在直線的方程是3x-y-16=0,x+y-11=0.

解析試題分析:依題意,由方程組x+y?1=0,3x?y+4=0,可解得平行四邊形ABCD的頂點(diǎn)A的坐標(biāo),再結(jié)合對角線的交點(diǎn)是M(3,3),可求得C點(diǎn)坐標(biāo),利用點(diǎn)斜式即可求得其他兩邊所在直線的方程.
試題解析:聯(lián)立方程組x+y?1=0,3x?y+4=0,
解得x=?,y=,
所以平行四邊形ABCD的頂點(diǎn)A(?,),
設(shè)C(x0,y0),由題意,點(diǎn)M(3,3)是線段AC的中點(diǎn),
∴x0?=6,y0+=6,
解得x0=,y0=
∴C(,),
由已知,直線AD的斜率kAD=3.
∵直線BC∥AD,
∴直線BC的方程為3x-y-16=0,
由已知,直線AB的斜率kAB=-1,
∵直線CD∥AB,
∴直線CD的方程為x+y-11="0,"
因此,其他兩邊所在直線的方程是3x-y-16=0,x+y-11=0.
考點(diǎn):1.直線的一般式方程與直線的平行關(guān)系;2.直線的一般式方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

內(nèi)有一點(diǎn),為過點(diǎn)且傾斜角為的弦,

(1)當(dāng)=135時(shí),求;
(2)當(dāng)弦被點(diǎn)平分時(shí),求出直線的方程;
(3)設(shè)過點(diǎn)的弦的中點(diǎn)為,求點(diǎn)的坐標(biāo)所滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求經(jīng)過點(diǎn)并且和軸的正半軸、軸的正半軸所圍成的三角形的面積是的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的頂點(diǎn),的平分線所在直線方程為,邊上的高所在直線方程為

(1)求頂點(diǎn)的坐標(biāo);
(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

的三外頂點(diǎn)分別為.
(1)求邊AC所在的直線方程;
(2)求AC邊上的中線BD所在的直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求經(jīng)過直線的交點(diǎn)M,且滿足下列條件的直線方程:
(1)與直線2x+3y+5=0平行;   (2)與直線2x+3y+5=0垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)直線,為平面上的動(dòng)點(diǎn),過點(diǎn)作直線的垂線,垂足為,且.
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)、是軌跡上異于坐標(biāo)原點(diǎn)的不同兩點(diǎn),軌跡在點(diǎn)、處的切線分別為,且,、相交于點(diǎn),求點(diǎn)的縱坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(10分)解答下列問題:
(1)求平行于直線3x+4y-2=0,且與它的距離是1的直線方程;
(2)求垂直于直線x+3y-5=0且與點(diǎn)P(-1,0)的距離是的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線和點(diǎn)(1,2).設(shè)過點(diǎn)與垂直的直線為.
(1)求直線的方程;
(2)求直線與兩坐標(biāo)軸圍成的三角形的面積.

查看答案和解析>>

同步練習(xí)冊答案