2.執(zhí)行程序框圖,若輸入的a,b,k分別為1,2,3,則輸出的M=$\frac{15}{8}$.

分析 模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的M,a,b,n的值,當(dāng)n=4時(shí)不滿足條件n≤3,退出循環(huán),輸出M的值為$\frac{15}{8}$.

解答 解:模擬執(zhí)行程序框圖,可得
a=1,b=2,k=3,n=1
滿足條件n≤3,M=$\frac{3}{2}$,a=2,b=$\frac{3}{2}$,n=2
滿足條件n≤3,M=$\frac{8}{3}$,a=$\frac{3}{2}$,b=$\frac{8}{3}$,n=3
滿足條件n≤3,M=$\frac{15}{8}$,a=$\frac{8}{3}$,b=$\frac{15}{8}$,n=4
不滿足條件n≤3,退出循環(huán),輸出M的值為$\frac{15}{8}$.
故答案為:$\frac{15}{8}$.

點(diǎn)評 本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖,正確依次寫出每次循環(huán)得到的M,a,b,n的值是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.化簡:tanα(1-cot2α)+cotα(1-tan2α)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某蔬菜基地種植甲、乙兩種無公害蔬菜,生產(chǎn)一噸甲菜需用電力9千瓦時(shí),耗肥4噸,3個(gè)工時(shí);生產(chǎn)一噸乙菜需用電力5千瓦時(shí),耗肥5噸,10個(gè)工時(shí);現(xiàn)該基地有電力360千瓦時(shí),肥200噸,300個(gè)工時(shí),已知生產(chǎn)一噸甲菜獲利700元,已知生產(chǎn)一噸乙菜獲利1200元,在上述條件限制下,問如何甲、乙兩種蔬菜的種植,才能使利潤最大?試寫出這個(gè)問題的約束條件和目標(biāo)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求下列函數(shù)的定義域:
(1)y=ln(x2-x);
(2)y=$\sqrt{lnx}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知O是△ABC的外心,|$\overrightarrow{AB}$|=$\sqrt{2}$|$\overrightarrow{AC}$|=2$\sqrt{2}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-4,若$\overrightarrow{AO}$=x1 $\overrightarrow{AB}$+x2$\overrightarrow{AC}$,則x1+x2的值為$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知m,n∈R+,f(x)=|x+m|+|2x-n|.
(1)求f(x)的最小值;
(2)若f(x)的最小值為2,求${m^2}+\frac{n^2}{4}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=e2x+(1-2t)ex+t2
(1)若g(t)=f(1),討論關(guān)于t的函數(shù)y=g(t)在t∈[0,m](m>0)上的最小值;
(2)若對任意的t∈R,x∈[0,+∞)都有f(x)≥ax+2-cosx,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.不等式-x2+5x+6>0的解集是(-1,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若函數(shù)f(x)是冪函數(shù),且滿足$\frac{f(4)}{f(2)}$=3,則f($\frac{1}{2}$)的值為( 。
A.-3B.-$\frac{1}{3}$C.3D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案