如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC的中點,F(xiàn)在棱AC上,且AF=3FC.

(1)求證AC⊥平面DEF;

(2)若M為BD的中點,問AC上是否存在一點N,使MN∥平面DEF?若存在,說明點N的位置;若不存在,試說明理由.

(3)求平面ABD與平面DEF所成銳二面角的余弦值。

 

【答案】

解(證明)(1)∵AB⊥平面BCD,∴AB⊥BC,AB⊥BD.

∵△BCD是正三角形,且AB=BC=a,∴AD=AC=

設G為CD的中點,則CG=,AG=

,

三棱錐D-ABC的表面積為

(2)取AC的中點H,∵AB=BC,∴BH⊥AC.

∵AF=3FC,∴F為CH的中點.

∵E為BC的中點,∴EF∥BH.則EF⊥AC.

∵△BCD是正三角形,∴DE⊥BC.

∵AB⊥平面BCD,∴AB⊥DE.

∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.

∵DE∩EF=E,∴AC⊥平面DEF.

(3)存在這樣的點N,

當CN=時,MN∥平面DEF.

連CM,設CM∩DE=O,連OF.

由條件知,O為△BCD的重心,CO=CM.

∴當CF=CN時,MN∥OF.∴CN=

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC的中點,F(xiàn)在棱AC上,且AF=3FC.
(1)求三棱錐D-ABC的表面積;
(2)求證AC⊥平面DEF;
(3)若M為BD的中點,問AC上是否存在一點N,使MN∥平面DEF?若存在,說明點N的位置;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐D-ABC中,△ADC,△ACB均為等腰直角三角形AD=CD=
2
,∠ADC=∠ACB=90°,M為線段AB的中點,側(cè)面ADC⊥底面ABC.
(Ⅰ)求證:BC⊥平面ACD;
(Ⅱ)求異面直線BD與CM所成角的余弦值;
(Ⅲ)求二面角A-CD-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

如圖,在三棱錐DABC中,已知△BCD是正三角

形,AB⊥平面BCD,ABBCa,EBC的中點,

F在棱AC上,且AF=3FC

(1)求三棱錐DABC的表面積;

(2)求證AC⊥平面DEF;

(3)若MBD的中點,問AC上是否存在一點N

使MN∥平面DEF?若存在,說明點N的位置;若不

存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:正定中學2010高三下學期第一次考試(數(shù)學理) 題型:解答題

(本小題滿分12分)
如圖,在三棱錐DABC中,已知△BCD是正三角
形,AB⊥平面BCD,ABBCa,EBC的中點,
F在棱AC上,且AF=3FC
(1)求三棱錐DABC的表面積;
(2)求證AC⊥平面DEF;
(3)若MBD的中點,問AC上是否存在一點N,
使MN∥平面DEF?若存在,說明點N的位置;若不
存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:正定中學2010高三下學期第一次考試(數(shù)學理) 題型:解答題

(本小題滿分12分)

如圖,在三棱錐DABC中,已知△BCD是正三角

形,AB⊥平面BCD,ABBCaEBC的中點,

F在棱AC上,且AF=3FC

(1)求三棱錐DABC的表面積;

(2)求證AC⊥平面DEF;

(3)若MBD的中點,問AC上是否存在一點N,

使MN∥平面DEF?若存在,說明點N的位置;若不

存在,試說明理由.

 

查看答案和解析>>

同步練習冊答案