已知函數(shù)f(x)=
ax-6
x2+b
的圖象在點(diǎn)M(-1,f(-1))處的切線(xiàn)方程為x+2y+5=0,則a+b=( 。
A、3B、2C、5D、4
考點(diǎn):利用導(dǎo)數(shù)研究曲線(xiàn)上某點(diǎn)切線(xiàn)方程
專(zhuān)題:導(dǎo)數(shù)的概念及應(yīng)用
分析:求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義結(jié)合切線(xiàn)方程即可得到結(jié)論.
解答: 解:∵函數(shù)f(x)=
ax-6
x2+b
的圖象在點(diǎn)M(-1,f(-1))處的切線(xiàn)方程為x+2y+5=0,
∴切線(xiàn)斜率k=-
1
2
,且f(-1)=-2,
則f′(x)=
a(x2+b)-2x(ax-6)
(x2+b)2
=
-ax2+ab+12x
(x2+b)2
,
則f′(-1)=
-a+ab-12
(1+b)2
=-
1
2
,且
-a-6
1+b
=-2
,
兩式聯(lián)立解得a=2,b=3,即a+b=5,
故選:C
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的計(jì)算,根據(jù)導(dǎo)數(shù)的幾何意義建立方程關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四棱錐P-ABCD中,∠ABC═∠ACD=90°,∠BAC=∠CAD=60°,PA⊥底面ABCD,E為PD的中點(diǎn),PA=2AB=2.
(1)求四棱錐P-ABCD的體積V;
(2)求二面角E-AC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
2
x2-(4+a)x+6ln(x+b),g(x)=5ln(x+b)+
1
2
x2-3x,函數(shù)f(x)在x=1與x=2處取得極值.
(1)求實(shí)數(shù)a、b的值;
(2)若φ(x)=f(x)-g(x),求證:當(dāng)x∈(-1,+∞)時(shí),φ(x)≤0恒成立;
(3)證明:若x>0,y>0,則xlnx+ylny≥(x+y)ln
x+y
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
4
x4-
1
2
ax3
+4x-3(a>0).
(Ⅰ)若f(x)在x=1處切線(xiàn)與直線(xiàn)x+2y-3=0垂直,求a的值;
(Ⅱ)若f(x)在[0,+∞)為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

與曲線(xiàn)
x2
24
+
y2
49
=1共焦點(diǎn),而與曲線(xiàn)
x2
36
-
y2
64
=1共漸近線(xiàn)的雙曲線(xiàn)方程為( 。
A、
y2
16
-
x2
9
=1
B、
x2
16
-
y2
9
=1
C、
y2
9
-
x2
16
=1
D、
x2
9
-
y2
16
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)M(x,y)(x,y)與定點(diǎn)F1(-4,0)的距離,和點(diǎn)到直線(xiàn)l:x=-
25
4
的距離的比是常數(shù)
4
5
,則點(diǎn)M的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
b
c
是不共面的三個(gè)向量,則下列向量組能作為一個(gè)基底的是( 。
A、2
a
a
-
b
,
a
+2
b
B、2
b
,
b
-
a
b
+2
a
C、
a
,2
b
b
-
c
D、
c
a
+
c
a
-
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,P是正方形ABCD對(duì)角線(xiàn)的交點(diǎn),G是PB的中點(diǎn).
(Ⅰ)根據(jù)三視圖,畫(huà)出該幾何體的直觀圖;
(Ⅱ)在直觀圖中,①證明:PD∥面AGC;②證明:面PBD⊥AGC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

lim
x→-∞
(
x2-x+1
+x-k)=1
,則k=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案