已知函數(shù)f(x)=x2-mx(m∈R),g(x)=lnx.
(1)記h(x)=f(x)-g(x),當(dāng)m=1時(shí),求函數(shù)h(x)的單調(diào)區(qū)間;
(2)若對(duì)任意有意義的x,不等式f(x)>g(x)恒成立,求m的取值范圍;
(3)求證:當(dāng)m>1時(shí),方程f(x)=g(x)有兩個(gè)不等的實(shí)根.
分析:(1)先求出m=1時(shí),h(x)=x2-x-lnx(x>0),再求出h′(x)=2x-1-
1
x
,利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間;
(2)對(duì)任意有意義的x,不等式f(x)>g(x)恒成立,即x2-mx>lnx,其中x>0,用分離常數(shù)的思想,得出m<
x2-lnx
x
在x>0恒成立,問題轉(zhuǎn)化為求
x2-lnx
x
最小值,令t(x)=x-
lnx
x
,求導(dǎo)數(shù),研究函數(shù)的單調(diào)性,求出它的最小值,即可求出m的取值范圍;
(3)構(gòu)造新函數(shù)h(x)=f(x)-g(x)=x2-mx-lnx,則研究f(x)=g(x)有兩個(gè)不等的實(shí)根問題轉(zhuǎn)化為h(x)有兩個(gè)零點(diǎn)問題,下可以采取求出h(x)的導(dǎo)數(shù),研究出函數(shù)的極值,再根據(jù)m>1研究極值的符號(hào),確定函數(shù)有幾個(gè)零點(diǎn),從而證明f(x)=g(x)兩個(gè)不等的實(shí)根
解答:(1)當(dāng)m=1時(shí),h(x)=x2-x-lnx(x>0),h′(x)=2x-1-
1
x
=
2x2-x-1
x
=
(x-1)(2x+1)
x
(x>0)
,…(3分)
當(dāng)0<x<1時(shí),h'(x)<0,∴h(x)的單調(diào)減區(qū)間為(0,1);…(4分)
當(dāng)x>1時(shí),h'(x)>0,∴h(x)的單調(diào)增區(qū)間為(1,+∞).…(5分)
(2)f(x)>g(x)等價(jià)于x2-mx>lnx,其中x>0,∴m<
x2-lnx
x
=x-
lnx
x
…(6分)
t(x)=x-
lnx
x
,得t′(x)=
x2+lnx-1
x2
,…(7分)
當(dāng)0<x<1時(shí),t'(x)<0,當(dāng)x>1時(shí),t'(x)>0,
∴m<t(x)min=t(1)=1,
∴m<1…(10分)
(3)設(shè)h(x)=f(x)-g(x)=x2-mx-lnx,,其中x>0.
h′(x)=2x-m-
1
x
=
2x2-mx-1
x2
=0
,等價(jià)于2x2-mx-1=0,
此方程有且只有一個(gè)正根為x0=
m+
m2+8
4
,…(11分)
且當(dāng)x∈(0,x0)時(shí),h'(x)<0,
∴h(x)在(0,x0)上單調(diào)遞減;
當(dāng)x∈(x0,+∞)時(shí),h'(x)>0,
∴h(x)在(x0,+∞)上單調(diào)遞增;
∴函數(shù)只有一個(gè)極值h(x)min=h(x0)=x02-mx0-lnx0.…(12分)
當(dāng)m>1時(shí),x0=
m+
m2+8
4
,關(guān)于m在(1,+∞)遞增,
∴x0∈(1,+∞),lnx0>0.…(13分)
∵m>1,∴(m2+8)-9m2=8(1-m2)<0,
m2+8
<3m
x0-m=
m+
m2+8
4
-m=
m2+8
-3m
4
<0
,…(14分)
h(x)min=h(x0)=x02-mx0-lnx0=x0(x0-m)-lnx0<0,…(15分)
當(dāng)m>1時(shí),方程f(x)=g(x)有兩個(gè)不等的實(shí)根.…(16分)
點(diǎn)評(píng):本題考查導(dǎo)數(shù)在最大值與最小值問題中的應(yīng)用,解題的關(guān)鍵是利用導(dǎo)數(shù)研究出函數(shù)的單調(diào)性,判斷出函數(shù)的最值,本題第二小題是一個(gè)恒成立的問題,恒成立的問題一般轉(zhuǎn)化最值問題來求解,本題即轉(zhuǎn)化為用單調(diào)性求函數(shù)在閉區(qū)間上的最值的問題,求出最值再判斷出參數(shù)的取值.本題運(yùn)算量過大,解題時(shí)要認(rèn)真嚴(yán)謹(jǐn),避免變形運(yùn)算失誤,導(dǎo)致解題失。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案