【題目】已知集合M={x|x2﹣3x﹣18≤0},N={x|1﹣a≤x≤2a+1}.
(1)若a=3,求M∩N和RN;
(2)若MN,求實數(shù)a的取值范圍.

【答案】
(1)解:集合M={x|x2﹣3x﹣18≤0}={x|﹣3≤x≤6},

當(dāng)a=3時,N={x|﹣2≤x≤7};

所以M∩N={x|﹣2≤x≤6}

RN={x|x<﹣2或x>7}


(2)解:因為MN,

所以{x|﹣3≤x≤6}{x|1﹣a≤x≤2a+1},

所以

所以a≥4


【解析】(1)化簡集合M、求出a=3時集合N,再計算M∩N與RN;(2)根據(jù)子集的概念,列出關(guān)于a的不等式組,求出a的取值范圍.
【考點精析】認真審題,首先需要了解交、并、補集的混合運算(求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個命題:
①由樣本數(shù)據(jù)得到的回歸方程 必過樣本點的中心( , );
②用相關(guān)指數(shù)R2來刻畫回歸效果,R2的值越小,說明模型的擬合效果越好;
③若線性回歸方程為 =3﹣2.5x,則變量x每增加1個單位時,y平均減少2.5個單位;
④在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越窄,殘差平方和越小.
上述四個命題中,正確命題的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天水市第一次聯(lián)考后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進行分析,

規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,

得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.

優(yōu)秀

非優(yōu)秀

合計

甲班

10

乙班

30

合計

110

(1)請完成上面的列聯(lián)表;

(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認為成績與班級有關(guān)系

(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號。試求抽到9號或10號的概率。

參考公式與臨界值表:。

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的頂點A(0,1),AB邊上的中線CD所在的直線方程為2x﹣2y﹣1=0,AC邊上的高BH所在直線的方程為y=0.
(1)求△ABC的頂點B、C的坐標(biāo);
(2)若圓M經(jīng)過不同的三點A、B、P(m,0),且斜率為1的直線與圓M相切于點P,求圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)都滿足,設(shè)函數(shù) ).

(Ⅰ)求的表達式;

(Ⅱ)若,使成立,求實數(shù)m的取值范圍;

(Ⅲ)設(shè) ,求證:對于

恒有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),設(shè)關(guān)于的方程個不同的實數(shù)解,則的所有可能的值為(

A. 3 B. 13 C. 46 D. 346

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x+m21x
(1)若函數(shù)f(x)為奇函數(shù),求實數(shù)m的值;
(2)若函數(shù)f(x)在區(qū)間(1,+∞)上是單調(diào)遞增函數(shù),求實數(shù)m的取值范圍;
(3)是否存在實數(shù)a,使得函數(shù)f(x)的圖象關(guān)于點A(a,0)對稱,若存在,求實數(shù)a的值,若不存在,請說明理由.
注:點M(x1 , y1),N(x2 , y2)的中點坐標(biāo)為( ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求證: n 棱柱中過側(cè)棱的對角面的個數(shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】請閱讀下列材料:若兩個正實數(shù)a1 , a2滿足a12+a22=1,那么a1+a2 .
證明:構(gòu)造函數(shù)f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因為對一切實數(shù)x , 恒有f(x)≥0,所以Δ≤0,從而得4(a1+a2)2-8≤0,所以a1+a2 .
根據(jù)上述證明方法,若n個正實數(shù)滿足a12+a22+…+an2=1時,你能得到的結(jié)論為

查看答案和解析>>

同步練習(xí)冊答案