(09年長沙一中一模理)(13分)已知橢圓C的中心為坐標原點O,焦點F1F2x軸上,離心率為,點Q在橢圓C上且滿足條件:= 2, 2

(Ⅰ)求橢圓C的方程;

     (Ⅱ)設(shè)A、B為橢圓上不同的兩點,且滿足OAOB,若(R)且,試問:是否為定值.若為定值,請求出;若不為定值,請說明理由。

解析:(Ⅰ)設(shè)橢圓方程為,∵e =,∴a = 2c

,

又2      ∴cos∠F1QF2 =

由|F1F2|2 = |QF1|2 + |QF2|2 2|QF|?|QF2|cos∠F1QF2a = 2,c = 1,b2 = 3

∴橢圓C的方程為.          ……5分

(Ⅱ)依題意可知,點M為由點O向直線AB所作的垂線的垂足.

設(shè)A(x1y1),B(x2,y2)

(1)當(dāng)x1 = x2時,直線OA、OB的斜率分別為±1,解方程組x

.                       ……6分

(2)當(dāng)x1x2時,設(shè)AB的直線方程為:y = kx + m,代入

(3 + 4k2)x2 + 8mkx + 4m2 12 = 0

x1 + x2 =,x1?x2 =          ……8分

,∴=

∴7m2 = 12 (k2 + 1)     ∴      ……11分

又∵

綜上所述.                 ……13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年長沙一中一模文)(13分)   設(shè)橢圓的離心率為,點,,原點到直線的距離為

(1)求橢圓的方程;

(2)設(shè)點,點在橢圓上(與、均不重合),點在直線上,若直線的方程為,且,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年長沙一中一模文)(12分)  現(xiàn)有甲、乙兩個盒子,甲盒子里盛有4個白球和4個紅球,乙盒子里盛有3個白球和若干個紅球,若從乙盒子里任取兩個球取得同色球的概率為

(1)求乙盒子中紅球的個數(shù);

(2)從甲、乙盒子里各任取兩個球進行交換,若交換后乙盒子里的白球數(shù)和紅球數(shù)相等,就說這次交換是成功的,試求進行一次這樣的交換成功的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年長沙一中一模理)(13分)已知函數(shù)f (x) = lnx,g (x) =(a>0),設(shè)F(x) = f (x) + g (x).

(1)求函數(shù)F(x)的單調(diào)區(qū)間;

(2)若點為函數(shù)的圖象上任意一點,當(dāng)時,點P處的切線的斜率k恒成立,求實數(shù)a的最小值;

(3)是否存在實數(shù)m,使得函數(shù)y = g() + m 1的圖象與函數(shù)y = f (1 + x2)的圖象恰有四個不同的交點?若存在,求出實數(shù)m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年長沙一中一模理)(12分)在如圖所示的多面體中,底面△ABC是邊長為2的正三角形,DAEC均垂直于平面ABC,且DA = 2,EC = 1.

(Ⅰ)求點A到平面BDE的距離;

(Ⅱ)求二面角BEDA的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年長沙一中一模理)(12分)某單位小會議室里的3只白熾燈泡已壞,電工李師傅前往會議室更換。若所帶燈泡包裝盒中共有6只燈泡(外觀形狀完全一樣),其中4只好的,2只壞的。李師傅每次隨機從包裝盒中任取一只(每只被取的概率相同),若取出的燈泡是好的,則將其更換小會議室已壞的燈泡,若取出的燈泡是壞的,則不再放回包裝盒,也不能用它更換小會議室已壞的燈泡.

(Ⅰ)求李師傅第二次所取的燈泡是好的的概率;

(Ⅱ)設(shè)李師傅全部更換了小會議室的3只已壞燈泡時,從包裝盒中所取燈泡次數(shù)為,求的分布列和期望.

查看答案和解析>>

同步練習(xí)冊答案