5.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦點為F(-c,0),F(xiàn)′(c,0),c>0,過點F且平行于雙曲線漸近線的直線與拋物線y2=4cx交于點P,若點P在以FF′為直徑的圓上,則$\frac{^{2}}{{a}^{2}}$=$\frac{\sqrt{5}-1}{2}$.

分析 利用拋物線的性質(zhì)、雙曲線的漸近線、直線平行的性質(zhì)、圓的性質(zhì)、聯(lián)立方程組,建立a,c的關(guān)系即可得到結(jié)論.

解答 解:如圖,設(shè)拋物線y2=4cx的準(zhǔn)線為l,作PQ⊥l于Q,
雙曲線的右焦點為F',由題意可知FF'為圓x2+y2=c2的直徑,
∴設(shè)P(x,y),(x>0),則PF'⊥PF,且tan∠PFF'=$\frac{a}$,
∴滿足$\left\{\begin{array}{l}{{y}^{2}=4cx}\\{{x}^{2}+{y}^{2}={c}^{2}}\\{\frac{y}{x+c}=\frac{a}}\end{array}\right.$,
即有x2+4cx-c2=0,
則x=(-2±$\sqrt{5}$)c,
即x=($\sqrt{5}$-2)c,或x=(-$\sqrt{5}$-2)c(舍去)
將x=($\sqrt{5}$-2)c代入第三式,得$\frac{y}{(\sqrt{5}-1)c}$=$\frac{a}$,
即y=$\frac{(\sqrt{5}-1)bc}{a}$,再將y代入第一式得$\frac{^{2}}{{a}^{2}}$=$\frac{\sqrt{5}-1}{2}$.
故答案為:$\frac{\sqrt{5}-1}{2}$.

點評 熟練掌握拋物線的性質(zhì)、雙曲線的漸近線、直線平行的性質(zhì)、圓的性質(zhì)是解題的關(guān)鍵.本題運算量較大,綜合性較強.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.ABCD矩形,AB=2,AD=4,M為AD中點.F在線段MD上動,將△ABF沿BF折起,使A在面BCDF內(nèi)射影O在BC上,BO=t.則t∈[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.圓心為(1,1)且在直線x+y=4上截得的弦長為2$\sqrt{2}$的圓的方程是( 。
A.(x-1)2+(y-1)2=10B.(x-1)2+(y-1)2=20C.(x-1)2+(y-1)2=2D.(x-1)2+(y-1)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求下列函數(shù)的周期:
(1)y=sin3x,x∈R;
(2)y=3sin$\frac{x}{4}$,x∈R;
(3)y=2sin(2x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知點F為橢圓$\frac{{x}^{2}}{2}$+y2=1的左焦點,過點F的直線l1 與橢圓交于P、Q兩點,過F且與l1垂直,直線l2交橢圓于M,N兩點,求四邊形PMQN面積的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.先把函數(shù)y=f(x)的圖象向右移$\frac{π}{6}$個單位,再把橫坐標(biāo)伸長到原來的2倍,再把縱坐標(biāo)縮短到原來的$\frac{2}{3}$,所得圖象的解析式是y=2sin($\frac{1}{2}$x+$\frac{π}{3}$),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知sinα+cosα=-$\frac{1}{3}$,其中0<α<π,求sinα-cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.通過計算可得下列等式:
23-13=3×12+3×1+1;
33-23=3×22+3×2+1;
43-33=3×32+3×3+1;

(n+1)3-n3=3×n2+3×n+1.
將以上各等式兩邊分別相加,得
(n+1)3-13=3(12+22+…+n2)+3(1+2+3+…+n)+n;
即12+22+32+…+n2=$\frac{1}{6}$n(n+1)(2n+1).
類比上述求法,請你求出13+23+33+…+n3的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)集合A={x|a≤x≤a+2}與B={x|x<1或x>4},且A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案