A. | $\sqrt{6}$ | B. | $2\sqrt{3}$ | C. | $2\sqrt{2}$ | D. | $\frac{5}{2}$ |
分析 作出示意圖,尋找$|{\vec b-t\vec a}|$在何時取得最小值,計算出向量$\vec a$與向量$\vec b$的夾角及|$\overrightarrow{a}$|,由$({\vec c-\vec b})⊥({\vec c-\vec a})$可知$\vec c$的終點在一個圓周上,結合圖象,找出當$\vec c•({\vec a+\vec b})$取最大值時C的位置,進行幾何計算即可求出.
解答 解:設$\overrightarrow{a}$=$\overrightarrow{MA}$,$\overrightarrow$=$\overrightarrow{MB}$,$\overrightarrow{c}$=$\overrightarrow{MC}$,如圖:
∵向量$\vec a$,$\vec b$的夾角為鈍角,
∴當$\vec a$與$\vec b-t\vec a$垂直時,$|{\vec b-t\vec a}|$取最小值$\sqrt{3}$,即$\vec a⊥({\vec b+\frac{1}{2}\vec a})$.
過點B作BD⊥AM交AM延長線于D,則BD=$\sqrt{3}$,
∵|$\overrightarrow$|=MB=2,∴MD=1,∠AMB=120°,即$\vec a$與$\vec b$夾角為120°.
∵$\vec a⊥({\vec b+\frac{1}{2}\vec a})$,∴$\overrightarrow{a}•$($\overrightarrow+\frac{1}{2}\overrightarrow{a}$)=0,
∴|$\overrightarrow{a}$|•|$\overrightarrow$|•cos120°+$\frac{1}{2}$|$\overrightarrow{a}$|2=0,
∴|$\overrightarrow{a}$|=2,即MA=2,
∵$({\vec c-\vec a})⊥({\vec c-\vec b})$,∴$\vec c$的終點C在以AB為直徑的圓O上,
∵O是AB中點,∴$\overrightarrow{a}+\overrightarrow$=2$\overrightarrow{MO}$,
∴當M,O,C三點共線時,$\vec c•({\vec a+\vec b})$取最大值,
∵AB=$\sqrt{A{D}^{2}+B{D}^{2}}$=2$\sqrt{3}$,∴OB=0C=$\frac{1}{2}AB$=$\sqrt{3}$,
∵MA=MB=2,O是AB中點,∴MO⊥AB,
∴∠BOC=∠MOA=90°,
∴|$\overrightarrow{c}-\overrightarrow$|=BC=$\sqrt{2}$OB=$\sqrt{6}$.
故選:A.
點評 本題考查了平面向量在幾何中的應用,根據(jù)題目作出符合條件的圖形是關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5π}{6}$ | B. | $\frac{5π}{3}$ | C. | $\frac{11π}{6}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 最大值1 | B. | 最大值$\frac{3}{2}$ | C. | 最小值$\frac{3}{2}$ | D. | 最小值1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com