1.畫出函數(shù)y=1+2cos2x,x∈[0,π]的簡(jiǎn)圖,并求使y≥0成立的x的取值范圍.

分析 畫出函數(shù)y=1+2cos2x,x∈[0,π]的簡(jiǎn)圖,由 y≥0成立,求得cos2x≥-$\frac{1}{2}$,即2kπ-$\frac{2π}{3}$≤2x≤2kπ+$\frac{2π}{3}$,k∈Z,求得x的范圍;再結(jié)合x∈[0,π],進(jìn)一步確定x的取值范圍.

解答 解:畫出函數(shù)y=1+2cos2x,x∈[0,π]的簡(jiǎn)圖,如圖所示:
由 y=1+2cos2x≥0成立,求得cos2x≥-$\frac{1}{2}$,
∴2kπ-$\frac{2π}{3}$≤2x≤2kπ+$\frac{2π}{3}$,k∈Z,求得 kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{3}$,k∈Z.
再結(jié)合x∈[0,π],可得x的取值范圍為[0,$\frac{π}{3}$]∪[$\frac{2π}{3}$,π].

點(diǎn)評(píng) 本題主要考查余弦函數(shù)的圖象的特征,解三角不等式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若冪函數(shù)$f(x)={x^{{a^2}-2a-3}}$在(0+∞)上為減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-1)∪(3,+∞)B.(-1,3)C.(-∞,-1]∪[3,+∞)D.[-1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)y=sin(ωx+θ)(0<θ<π,ω>0)為偶函數(shù),則θ=( 。
A.2kπ+$\frac{π}{2}$(k∈Z)B.kπ+$\frac{π}{2}$(k∈Z)C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=ax-1(a>0且a≠1).
(1)若函數(shù)y=f(x)的圖象經(jīng)過(guò)P(3,4)點(diǎn),求a的值;
(2)若f(1ga)=100,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知雙曲線C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,拋物線C2的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過(guò)雙曲線C1的焦點(diǎn),若雙曲線C1與拋物線C2的交點(diǎn)P滿足PF2⊥F1F2,則雙曲線C1的離心率為$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{{x}^{2}-ax-^{2}}{x+a}$(x∈[0,+∞)),其中a>0,b∈R,記M(a,b)為f(x)的最小值.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)求a的取值范圍,使得存在b,滿足M(a,b)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知f(x)是定義在[-1,1]上的增函數(shù),且f(x+1)=f(2x+3),則x的取值范圍是{-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=-x2+4(a+1)x-4a2-4a-2.
(1)若f(x)在[0,2]的最大值是2,求實(shí)數(shù)a的值;
(2)是否存在實(shí)數(shù)m,n(m<n)使得函數(shù)y=f(x)在區(qū)間[m,n]上的值域是[2m,2n]?若存在,求出m,n的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知Sn為數(shù)列{an}的前n項(xiàng)和,$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{3}$+$\frac{{a}_{3}}{4}$+…+$\frac{{a}_{n-1}}{n}$=an-2(n≥2),且a1=2.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{(3{a}_{n}-5)(3{a}_{n+1}-5)}$,求數(shù)列{bn}的前n項(xiàng)和Bn

查看答案和解析>>

同步練習(xí)冊(cè)答案