12.對(duì)二次函數(shù)f(x)=ax2+bx+c(a為非零整數(shù)),四位同學(xué)分別給出下列結(jié)論,其中有且只有一個(gè)結(jié)論是錯(cuò)誤的,則錯(cuò)誤的結(jié)論是( 。
A.-1是f(x)的零點(diǎn)B.1是f(x)的極值點(diǎn)
C.3是f(x)的極值D.點(diǎn)(2,8)在曲線y=f(x)上

分析 可采取排除法.分別考慮A,B,C,D中有一個(gè)錯(cuò)誤,通過解方程求得a,判斷是否為非零整數(shù),即可得到結(jié)論.

解答 解:可采取排除法.
若A錯(cuò),則B,C,D正確.即有f(x)=ax2+bx+c的導(dǎo)數(shù)為f′(x)=2ax+b,
即有f′(1)=0,即2a+b=0,①又f(1)=3,即a+b+c=3②,
又f(2)=8,即4a+2b+c=8,③由①②③解得,a=5,b=-10,c=8.符合a為非零整數(shù).
若B錯(cuò),則A,C,D正確,則有a-b+c=0,且4a+2b+c=8,且$\frac{4ac-^{2}}{4a}$=3,解得a∈∅,不成立;
若C錯(cuò),則A,B,D正確,則有a-b+c=0,且2a+b=0,且4a+2b+c=8,解得a=-$\frac{8}{3}$不為非零整數(shù),不成立;
若D錯(cuò),則A,B,C正確,則有a-b+c=0,且2a+b=0,且$\frac{4ac-^{2}}{4a}$=3,解得a=-$\frac{3}{4}$不為非零整數(shù),不成立.
故選:A.

點(diǎn)評(píng) 本題考查二次函數(shù)的極值、零點(diǎn)等概念,主要考查解方程的能力和判斷分析的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,已知△ABC,D是AB的中點(diǎn),沿直線CD將△ACD折成△A′CD,所成二面角A′-CD-B的平面角為α,則(  )
A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某山區(qū)外圍有兩條相互垂直的直線型公路,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計(jì)劃修建一條連接兩條公路和山區(qū)邊界的直線型公路,記兩條相互垂直的公路為l1,l2,山區(qū)邊界曲線為C,計(jì)劃修建的公路為l,如圖所示,M,N為C的兩個(gè)端點(diǎn),測(cè)得點(diǎn)M到l1,l2的距離分別為5千米和40千米,點(diǎn)N到l1,l2的距離分別為20千米和2.5千米,以l2,l1在的直線分別為x,y軸,建立平面直角坐標(biāo)系xOy,假設(shè)曲線C符合函數(shù)y=$\frac{a}{{x}^{2}+b}$(其中a,b為常數(shù))模型.
(1)求a,b的值;
(2)設(shè)公路l與曲線C相切于P點(diǎn),P的橫坐標(biāo)為t.
①請(qǐng)寫出公路l長(zhǎng)度的函數(shù)解析式f(t),并寫出其定義域;
②當(dāng)t為何值時(shí),公路l的長(zhǎng)度最短?求出最短長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”,執(zhí)行該程序框圖,若輸入的a,b分別為14,18,則輸出的a=(  )
A.0B.2C.4D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.圓柱被一個(gè)平面截去一部分后與半球(半徑為r)組成一個(gè)幾何體,該幾何體三視圖中的正視圖和俯視圖如圖所示.若該幾何體的表面積為16+20π,則r=( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在平面四邊形ABCD中,∠A=∠B=∠C=75°.BC=2,則AB的取值范圍是($\sqrt{6}$-$\sqrt{2}$,$\sqrt{6}$+$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x),g(x)的定義域均為R,且f(x)是奇函數(shù),g(x)是偶函數(shù),f(x)+g(x)=ex,其中e為自然對(duì)數(shù)的底數(shù).
(1)求f(x),g(x)的解析式,并證明:當(dāng)x>0時(shí),f(x)>0,g(x)>1;
(2)設(shè)a≤0,b≥1,證明:當(dāng)x>0時(shí),ag(x)+(1-a)<$\frac{f(x)}{x}$<bg(x)+(1-b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若tanα=2tan$\frac{π}{5}$,則$\frac{{cos(α-\frac{3π}{10})}}{{sin(α-\frac{π}{5})}}$=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在三棱住ABC-A1B1C1中,∠BAC=90°,其正視圖和側(cè)視圖都是邊長(zhǎng)為1的正方形,俯視圖是直角邊長(zhǎng)為1的等腰直角三角形,設(shè)M,N,P分別是AB,BC,B1C1的中點(diǎn),則三棱錐P-A1MN的體積是$\frac{1}{24}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案